首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
The toxicity of the naturally derived insecticide spinosad was tested against the gypsy moth, Lymantria dispar. Bioassays using red oak leaf disks, treated with spinosad in a Potter spray tower, yielded an LC50 value of 0.0015 µg AI cm−2 (3‐day exposure; 13‐day evaluation; 2nd instar larvae). Applied to foliage to run‐off in the laboratory (potted red oak seedlings) and the field (4 m‐tall birch trees), spinosad effectively controlled 2nd instar larvae at concentrations ranging from 3 to 50 mg litre−1. Toxicity in the laboratory, and efficacy and persistence in the field, were comparable to those achieved with the insecticide permethrin. Laboratory studies supported field observations that control was achieved in part by knockdown due to paralysis. In addition, laboratory results demonstrated that crawling contact activity may play an important role in field efficacy; 50% of treated larvae were paralyzed 16 h after a 2‐min crawling exposure to glass coated with a 4 mg litre−1 spinosad solution. © 2000 Society of Chemical Industry  相似文献   

2.
In this study, we designed and analysed the insecticidal effectiveness of two short single-stranded DNA fragments from LdMNPV (Lymantria dispar multicapsid nuclear polyhedrosis virus) IAP-2 gene. Our results show that the ssDNA fragments from the antisense region is selectively lethal, and rapidly decreases the population of second instar gypsy moth (Lymantria dispar L.) larvae one day post-treatment (Control-H2O group vs oligoAn group, χ2 = 5; p < 0.05) when infected with LdMNPV as a trigger, before treatment through feeding with 75 pmol/µl of synthesized fragments from LdMNPV IAP-2 gene. Data analysis on larvae biomass did not show significant influence in all groups of the experiment when compared with the Control-H2O group. Relatively, our preliminary evaluation of biochemical parameters (total glucose and total protein concentrations) did not show significant response to the applied ssDNA oligonucleotides. Our conclusive remarks based on mortality data support the concept that antisense oligonucleotides from LdMNPV IAP-2 gene can act as an insecticide against pre-infected gypsy moth larvae.  相似文献   

3.
BACKGROUND: Spinosad is a biopesticide widely used for control of Frankliniella occidentalis (Pergande). It is reported to be non‐toxic to several predatory mite species used for the biological control of thrips. Predatory mites Typhlodromips montdorensis (Schicha), Neoseiulus cucumeris (Oudemans) and Hypoaspis miles (Berlese) have been used for control of F. occidentalis. This study investigated the impact of direct and residual toxicity of spinosad on F. occidentalis and predatory mites. The repellency of spinosad residues to these predatory mites was also investigated. RESULTS: Direct contact to spinosad effectively reduced the number of F. occidentalis adults and larvae, causing > 96% mortality. Spinosad residues aged 2–96 h were also toxic to F. occidentalis. Direct exposure to spinosad resulted in > 90% mortality of all three mite species. Thresholds for the residual toxicity (contact) of spinosad (LT25) were estimated as 4.2, 3.2 and 5.8 days for T. montdorensis, N. cucumeris and H. miles respectively. When mites were simultaneously exposed to spinosad residues and fed spinosad‐intoxicated thrips larvae, toxicity increased. Residual thresholds were re‐estimated as 5.4, 3.9 and 6.1 days for T. montdorensis, N. cucumeris and H. miles respectively. Residues aged 2–48 h repelled T. montdorensis and H. miles, and residues aged 2–24 h repelled N. cucumeris. CONCLUSION: Predatory mites can be safely released 6 days after spinosad is applied for the management of F. occidentalis. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
BACKGROUND: The codling moth is one of the principal pests of apple in the world. Resistance monitoring is crucial to the effective management of resistance in codling moth. Three populations of codling moth in neonate larvae were evaluated for resistance to seven insecticides via diet bioassays, and compared with a susceptible population. In addition, apple plots were treated with labeled field rate doses of four insecticides. Treated fruit were exposed to neonate larvae of two populations from commercial orchards. RESULTS: Two populations of codling moth expressed two‐ and fivefold resistance to azinphos‐methyl, seven‐ and eightfold resistance to phosmet, six‐ and tenfold resistance to lambda‐cyhalothrin, 14‐ and 16‐fold resistance to methoxyfenozide and sixfold resistance to indoxacarb, but no resistance to acetamiprid and spinosad. The impact of the resistance to azinphos‐methyl, measured as fruit damage, increased as the insecticide residues aged in the field. In contrast, fruit damage in methoxyfenozide‐ and lambda‐cyhalothrin‐treated fruit was observed earlier for resistant codling moth. No differences in efficacy were found for acetamiprid. CONCLUSIONS: Broad‐spectrum insecticide resistance was detected for codling moth. Resistance to azinphos‐methyl, lambda‐cyhalothrin and methoxyfenozide was associated with reduced residual activity in the field. Broad‐spectrum resistance presents serious problems for management of the codling moth in Michigan. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号