首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 331 毫秒
1.
Laboratory bioassays applying the neonicotinoid insecticides imidacloprid, acetamiprid and nitenpyram against clones of the peach-potato aphid Myzus persicae (Sulzer) demonstrated that these compounds effectively circumvent the known carboxylesterase, modified acetylcholinesterase (MACE) and knock-down (kdr) insecticide resistance mechanisms in this species. However, some clones showed cross-tolerance (up to 18-fold) of these compounds relative to susceptible standards. A survey assessing the frequency of neonicotinoid tolerance in M persicae in the UK, based on samples collected from the field and glasshouses between 1997 and 2000, showed that such tolerance is still rare. Experiments on neonicotinoid-susceptible and -tolerant populations of M persicae under simulated field conditions in the laboratory showed that, although the latter were well controlled by imidacloprid applied at recommended application rates, they were more likely to survive and reproduce when this compound was applied at lower concentrations. Such conditions are probably periodically present in imidacloprid-treated field and glasshouse crops. Selection favouring tolerant forms of M persicae could lead to increases in their frequency and the evolution of more potent resistance to neonicotinoids.  相似文献   

2.
Reproductive success and response to alarm pheromone, both potentially important components of fitness, were assessed using clones of Myzus persicae (Sulzer) to establish associations with insecticide resistance conferred by insensitive modified acetylcholinesterase (MACE). Both traits showed significant trends that were apparently related to this mechanism. MACE forms appeared to reproduce at slower rates than non-MACE forms expressing moderate (R1) levels of another resistance mechanism based on elevated carboxylesterase. However, MACE forms were more responsive to alarm pheromone than their non-MACE counterparts. The potential implications for parasitoid performance were tested using two clones showing clear differences in alarm response. The level of parasitism of M persicae by the parasitoid Aphidius colemani (Viereck) was significantly lower in MACE forms on pepper crops compared to non-MACE forms. In addition, the distribution of MACE and non-MACE forms differed on the pepper plants, with more MACE forms being found on the growing points. The presence of the parasitoid A colemani did not alter this change in distribution.  相似文献   

3.
A range of insecticides was applied at recommended application rates against populations of Myzus persicae (Sulzer) carrying various combinations of three insecticide resistance mechanisms (carboxylesterase-based metabolic resistance and two target-site mechanisms, known as MACE and kdr), supported on either Chinese cabbage or potatoes in field simulator cages. Patterns of response were similar on both host species. MACE conferred extreme resistance to pirimicarb and triazamate (dimethylcarbamate insecticides). The kdr mechanism was associated with resistance to lambda-cyhalothrin, cypermethrin and deltamethrin (pyrethroid insecticides). A mixture of pirimicarb plus lambda-cyhalothrin was only effective against M persicae not carrying kdr or carrying kdr and low carboxylesterase-based resistance. None of the insecticides tested was effective against M persicae carrying both MACE and kdr resistance. The implications of these findings for the formulation of control strategies, based on regular monitoring of resistance genotype frequencies, are discussed.  相似文献   

4.
Experiments were done on commercial potato crops in the UK to investigate the effect of different insecticide sequences on the control and insecticide resistance status of Myzus persicae (Sulzer). The work was done to provide field validation of similar laboratory studies done in 'field simulators'. To ensure adequate aphid populations and to influence the initial resistance status of the aphid population, cultured M. persicae from a clone of known resistance status (esterase R1, kdr heterozygote, non-MACE (modified acetylcholinesterase)) were inoculated into both experiments. Two-spray programmes starting with lambda-cyhalothrin (a pyrethroid insecticide) gave poor control in comparison with programmes starting with pirimicarb (a carbamate insecticide) or pirimicarb-containing mixtures. This concurred closely with the results obtained from single applications in field simulator studies. Treatment sequences containing pymetrozine (a pyridine azomethine insecticide) were also effective, though slower-acting. This again concurs with field simulator studies. The proportions of aphids carrying different resistance mechanisms were largely unaffected by treatment in these experiments. The implications of these results for field control strategies are discussed.  相似文献   

5.
BACKGROUND: Parthenogenetic clones of the green peach aphid, Myzus persicae (Sulzer), and the cotton aphid, Aphis gossypii Glover, were tested with the anthranilic diamide insecticide cyantraniliprole (i.e. DuPont? Cyazypyr?) in systemic‐uptake bioassays to investigate potential for cross‐resistance conferred by mechanisms of insecticide resistance to organophosphates, carbamates and pyrethroids and, in the case of M. persicae, reduced sensitivity to neonicotinoids. These data were compared with the response of field samples of M. persicae and A. gossypii collected from around Europe. RESULTS: Cyantraniliprole was not cross‐resisted by any of the known insecticide resistance mechanisms present in M. persicae or A. gossypii. The compound was equally active against resistant and susceptible aphid strains. The responses of the M. persicae field samples were very consistent with a maximum response ratio of 2.9 compared with a standard laboratory clone. The responses of the A. gossypii field samples were more variable, although a majority of the responses were not statistically different. CONCLUSION: Cyantraniliprole is currently the only anthranilic diamide (IRAC MoA 28) insecticide targeting aphid species such as M. persicae and A. gossypii. There is no evidence to suggest that the performance of this compound is affected by commonly occurring mechanisms that confer resistance to other insecticide chemistries. Cyantraniliprole is therefore a valuable tool for managing insecticide resistance in these globally important pests. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
BACKGROUND: Although there are still no confirmed reports of strong resistance to neonicotinoid insecticides in aphids, the peach-potato aphid (Myzus persicae Sulzer) shows variation in response, with some clones exhibiting up to tenfold resistance to imidacloprid. Five clones varying in response to imidacloprid were tested with four other neonicotinoid molecules to investigate the extent of cross-resistance.RESULTS: All four compounds-thiamethoxam, thiacloprid, clothianidin and dinotefuran-were cross-resisted, with ED(50) values ranked in the same order as for imidacloprid. Resistance factors ranged up to 11 for imidacloprid, 18 for thiamethoxam, 13 for thiacloprid, 100 for clothianidin and 6 for dinotefuran.CONCLUSION: This variation in response does not appear to be sufficient to compromise the field performance of neonicotinoids aimed at controlling aphids. However, it highlights the need for careful vigilance and stewardship in all M. persicae populations, and a need to consider neonicotinoids as a single cross-resisted group for management purposes.  相似文献   

7.
为寻找新的环境友好型杀虫剂,用溴代呋喃甲醛和溴代噻吩甲醛分别与2-取代1,3-丙二硫醇缩合,合成了16个未见文献报道的2-溴代呋喃基或噻吩基-1,3-二噻烷衍生物。其化学结构均通过1H NMR和元素分析或质谱的确认。初步的生物活性测试结果表明,该类化合物对桃蚜Myzus persicae表现出一定的杀虫活性,其中化合物 M11 在600 μg/mL下对桃蚜的校正死亡率为90%。  相似文献   

8.
Advances in understanding insecticide resistance in the peach-potato aphid, Myzus persicae (Sulzer), at the genotypic, biochemical and molecular levels have led to rapid and precise methods for the detection of several resistance mechanisms (elevated carboxylesterase, modified acetylcholinesterase or MACE, and knockdown resistance or kdr) in individual insects, and for monitoring their frequencies over space and time. This paper summarises the results of two long-term surveys of resistance dynamics in M persicae in England, based on samples collected directly from field and glasshouse crops or from four 12.2-m suction traps. The study showed marked fluctuations in resistance frequencies that probably reflect the counteracting forces of selection imposed by insecticides for aphids possessing more copies of esterase resistance genes, and selection against these forms when insecticide use is relaxed. There is growing evidence that several different resistance mechanisms in M persicae have associated fitness costs. In the case of esterase and MACE, these costs are apparently strong enough to effect a decline in resistance frequency over winter, and a more prolonged decline over successive cropping seasons when aphid numbers are insufficient to trigger intensive chemical applications. Changes in the overall frequency of resistance genotypes may also be influenced by the predominance of year-round parthenogenesis in M persicae in the UK, leading to non-random associations between mechanisms and selection operating on clonal lineages rather than individual genotypes.  相似文献   

9.
The peach-potato aphid Myzus persicae (Sulzer) has developed a number of insecticide resistance mechanisms owing to the high selective pressure produced by world-wide insecticide treatments. Knowledge of the geographical distribution and the temporal evolution of these resistant phenotypes helps to develop suitable pest-management programs. Current understanding of the major mechanisms of resistance at the molecular level makes it possible to diagnose the presence of modified acetylcholinesterase (MACE) or knockdown resistance (kdr). This paper describes a rapid method for the identification of both resistance mechanisms in a single molecular assay by using restriction fragment length polymorphism of PCR products (RFLP-PCR) in individual as well as pooled aphids.  相似文献   

10.
为了寻找和发现高效、广谱、低毒、低生态风险并与现有杀虫剂无交互抗性的新型杀虫剂,以2-氯-5-氯甲基噻唑为原料,经多步反应制得10个新型N-氰基甲基 砜亚胺类化合物,其结构均经核磁共振氢谱、元素分析确证。室内生物活性测试结果表明,目标化合物对桃蚜Myzus persicae具有一定的杀虫活性,其中化合物 7-1 在质量浓度为10 mg/L下对桃蚜的致死率达到80%。  相似文献   

11.
桃蚜对噻虫嗪代谢抗性机制研究   总被引:1,自引:0,他引:1  
对桃蚜进行室内噻虫嗪抗性品系筛选,选育至15代后抗性倍数达到75.6倍。对噻虫嗪敏感品系(THI-S)和抗性品系(THI-R)桃蚜的谷胱甘肽S-转移酶(GSTs)、酸性磷酸酯酶(ACP)、碱性磷酸酯酶(ALP)、羧酸酯酶(CarE)、多功能氧化酶(MFO)O-脱甲基活性进行了比较,结果显示:敏感品系(THI-S)和抗性品系(THI-R)的谷胱甘肽S-转移酶比活力分别为3.127 5和3.215 9,差异不显著,桃蚜抗性品系体内酸性磷酸酯酶、碱性磷酸酯酶、羧酸酯酶和多功能氧化酶O-脱甲基活性均显著高于敏感品系,分别达到了1.57、2.10、6.12、2.03倍。表明桃蚜对噻虫嗪抗性的产生与酸性磷酸酯酶、碱性磷酸酯酶、羧酸酯酶和多功能氧化酶O-脱甲基的活性相关。  相似文献   

12.
测定了吡虫啉、鱼藤酮、阿维菌素和印楝素4种杀虫剂对桃蚜及其捕食性天敌异色瓢虫成虫的相对毒力。4种药剂对桃蚜的毒力大小依次为阿维菌素>吡虫啉>鱼藤酮>印楝素,其LC50分别为0.042、1.96、6.54和10.17 mg/L。对异色瓢虫的LC50则分别为1009.42、201.89、8202.90和大于7500 mg/L,益害毒性比分别为24033.81、103.01、1254.27和大于786.63。4种药剂在有效防治桃蚜的前提下对天敌异色瓢虫的安全性依次为阿维菌素>鱼藤酮>印楝素>吡虫啉。阿维菌素、吡虫啉、印楝素和鱼藤酮这4种药剂均可在蚜虫综合治理中发挥有效的作用。  相似文献   

13.
我国西南烟区桃蚜Myzus persicae (Sulzer)的抗药性水平   总被引:3,自引:0,他引:3  
采用毛细管点滴法测定了我国西南烟区云南和贵州省的10个桃蚜Myzus persicae(Sulzer)种群对氰戊菊酯、氧化乐果、灭多威和吡虫啉的抗性。结果表明,云南楚雄种群对氰戊菊酯的抗性高达26.87倍,对氧化乐果、灭多威、吡虫啉的抗性分别为敏感种群的10.02、6.00和5.83倍。云南大理、丽江、石林和曲靖4个种群对氰戊菊酯的抗性分别达24.98、14.94、11.11和10.33倍,抗性水平也较高,但对氧乐果、灭多威和吡虫啉仍较为敏感,应尽早实施抗性治理措施。贵州省的5个种群仍然处在敏感阶段。  相似文献   

14.
Pymetrozine, a novel compound belonging to the class pyridine-azomethines, is a feeding inhibitor labeled for use against plant pests in the order Hemiptera. Pymetrozine was evaluated for its ability to interfere with whitefly transmission of the begomovirusTomato yellow leaf curl virus (TYLCV). Pymetrozine was applied as Fulfill TM 50 WG at two rates (0.291 and 0.582 g formulationl −1) to tomato seedlings with four to six true leaves. Viruliferous whiteflies (three to five per plant) were added 1, 4, 7 and 11 d after a single application of pymetrozine, and transmission rates were determined 4 wk after the addition of whiteflies. Pymetrozine provided protection against transmission of TYLCV by viruliferous whiteflies for up to 1 wk after a single apliation. No phytotoxicity was observed on tomato transplants. These results indicate that pymetrozine could be an effective tool for tomato transplant producers to protect susceptible transplants from infection by begomoviruses, such as TYLCV. Pymetrozine might also work well as part of an integrated approach to begomovirus management in greenhouse tomato fruit production. http://www.phytoparasitica.org positing Oct. 20, 2003.  相似文献   

15.
嗪酮类杀虫剂可分为二嗪酮类和三嗪酮类杀虫剂,因其具有高效、低毒、作用机制独特等特点而在农药研究领域具有重要的地位,其中吡蚜酮是此类杀虫剂中的典型代表。本文综述了吡蚜酮的开发历程和作用机制,以及二嗪酮类和三嗪酮类杀虫剂的研究进展,对该类杀虫剂的构效关系进行了总结,对其发展前景进行了展望。  相似文献   

16.
A microencapsulated formulation that gives a burst release of piperonyl butoxide (PBO) several hours before a burst release of a conventional pyrethroid can effectively overcome metabolic resistance in Bemisia tabaci Gennadius, Helicoverpa armigera (Hübner), Aphis gossypii Glover and Myzus persicae Sulzer. This increase in efficacy against resistant pests was reflected in a field trial against B. tabaci on cotton, eliminating the need for two treatments. The ratio between the active insecticide and the synergist was found to be crucial in reducing resistance factors.  相似文献   

17.
The susceptibility of 88 and 38 field samples of Myzus persicae (Sulzer) to imidacloprid and deltamethrin respectively was examined using the FAO dip test bioassay. The field samples were collected from tobacco and peach from various regions of Greece in the period from 2004 to 2006. In addition, 497, 349 and 370 clones originating from peach and tobacco were screened for the three known resistance mechanisms, elevated esterases, modified acetylcholinesterase (MACE) and knockdown resistance (kdr) respectively, using biochemical and DNA diagnostics. Most of the samples assayed with imidacloprid showed low resistance factors (RFs)-39% below 5 and 21% between 5 and 10. However, 9% of the samples (all from tobacco) showed relatively high RF values (24-73). Differences were found between crops, with higher RF values recorded in samples from tobacco than in those from peach. Bioassays with deltamethrin revealed the development of strong resistance in the populations examined. The RFs were mostly higher than 23, and in 29% of the samples they were extremely high (152-436). Finally, the three known resistance mechanisms were found in high frequencies in the populations examined, although some differences between crops and years were detected. The implications of the study for management schemes against M. persicae are discussed.  相似文献   

18.
Within the framework of a molecular exploration of target resistance in populations of Myzus persicae on oilseed rapes in France, (1) the S431F mutation (coding gene ace2), although previously reckoned to be rare, revealed to be frequent, (2) M918L (phenotypically characterised) and L932F (both on para) were found for the first time in M. persicae, and (3) a linkage was revealed between M918L and S431F. While until recently populations developing on French oilseed rapes were dominated by genotypes possessing pyrethroid target resistance and esterase overproduction, to date a different type of dominating genotype, equipped with carbamate and pyrethroid target resistance, seems to be invading such fields.  相似文献   

19.
桃蚜高效氯氰菊酯抗药性与乙酰胆碱酯酶的关系   总被引:3,自引:0,他引:3  
杨帆  帅霞 《植物保护》2008,34(5):60-62
于室内对桃蚜进行高效氯氰菊酯抗药性筛选,选育至10代后抗性倍数增长到49.9倍。生化分析表明,抗性品系乙酰胆碱酯酶(AChE)活性均显著高于敏感品系。比较两个品系乙酰胆碱酶活性个体频率分布发现,更多的桃蚜个体向酶活性高的区域分布。酶动力学测定结果显示,抗性桃蚜酯酶对底物的Vmax、Km显著大于敏感品系。  相似文献   

20.
Neonicotinoids represent a class of insect-selective ligands of nicotinic acetylcholine receptors. Imidacloprid, the first commercially used neonicotinoid insecticide, has been studied on neuronal preparations from many insects to date. Here we report first intrinsic binding data of thiamethoxam, using membranes from Myzus persicae Sulzer and Aphis craccivora Koch. In both aphids, specific binding of [3H]thiamethoxam was sensitive to temperature, while the absolute level of non-specific binding was not affected. In M persicae, binding capacity (Bmax) for [3H]thiamethoxam was ca 450 fmol mg(-1) of protein at 22 degrees C and ca 700 fmol mg(-1) of protein at 2 degrees C. The negative effect of increased temperature was reversible and hence not due to some destructive process. The affinity for [3H]thiamethoxam was less affected by temperature: Kd was ca 11 nM at 2 degrees C and ca 15 nM at 22 degrees C. The membranes also lost binding sites for [3H]thiamethoxam during prolonged storage at room temperature, and upon freezing and thawing. In A craccivora, [3H]thiamethoxam was bound with a capacity of ca 1000 fmol mg(-1) protein and an affinity of ca 90 nM, as measured at 2 degrees C. Overall, the in vitro temperature sensitivity of [3H]thiamethoxam binding was in obvious contrast to the behaviour of [3H]imidacloprid studied in parallel. Moreover, the binding of [3H]thiamethoxam was inhibited by imidacloprid in a non-competitive mode, as shown with M persicae. In our view, these differences demonstrate that thiamethoxam and imidacloprid, which represent different structural sub-classes of neonicotinoids, do not share the same binding site or mode. This holds also for other neonicotinoids, as we report in a companion article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号