首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous studies, periodic sampling of topsoils on runoff plots on sandy soils at the Hilton experimental site, Shropshire, UK, suggested erosion decreased the topsoil clay content and increased the coarse fraction. However, a comparison of soil and sediment properties suggested erosion selectively removed sand. Therefore, to cross-check the effects of erosion on soil properties, topsoil samples were collected from bare, eroded runoff plots and compared with samples from adjacent non-eroded grassland. Bare, eroded soil was stonier and particularly deficient in sand compared with grassed soil. Textural differences were very marked in the medium and coarse sands, especially the 0.5–1.0 mm fraction. On the basis of mean properties, the grassed soil was a very slightly stony loamy sand and the bare soil a slightly stony sandy loam. Soil organic matter was significantly less in the bare soils than the grassed soils and thus may have contributed to the higher erodibility of sands in bare soils.  相似文献   

2.
The morphological, physical, chemical and mineralogical properties of eight prominent classes of soil developed in the coast aeolianites and sands of Natal are presented. These data and information on soil geography lead to the conclusion that: (i) losses of silica and bases and relative accumulation of iron (the ferrallitic process) have given rise to red and yellow kaolinitic materials; (ii) clay eluviation has given rise to coarse textured topsoils and to B2t horizons; and (iii) the hydromorphic process has caused grey colours in many sandy topsoils, plinthite development at some E/B horizon interfaces and gleying of some B2 horizons. In the soils on the older aeolianites, there is no evidence of either podzolization or the coarser textured topsoil being a younger geological deposit. The development of yellow soils in younger aeolianites may indicate a cooler climate than existed when red materials developed from the older aeolianites.  相似文献   

3.
Youcai  Zhao  Jianggying  Liu  Renhua  Huang  Guowei  Gu 《Water, air, and soil pollution》2000,118(3-4):281-297
The two soil profiles of Al-Ahmadi and Burgan oil fields are alkaline aridsoils with similar pH values and bicarbonate contents. Differences betweenthe carbonate (CaCO3), exchangeable cation and sulphate contents of the twosoil profiles are attributed to the diversified sources of the soils. Carbonateincrements in topsoils of both profiles were probably derived from the newsand dunes formed after the Gulf War and migrated to the vicinity of thestudy area. Elevated concentrations of calcium, magnesium and potassiumcations in topsoils were most probably supplied from the cation-rich formationwater associated with the oil spilled in the two fields.The values of pH, electrical conductivity and sodium adsorption ratio forthe two soil profiles classify them as saline soils. The high and similarproportions of sodium and chloride ions adsorped in the topsoils and the highsalinity of both profiles indicate the accumulation of salts due to the floodingof soils by formation water and sea water used in controlling well fires. Thedownward oil/water movement and salt accumulation are restricted to theupper (25–95 cm) layer in the Burgan soil profile, whereas oil/water gangliaand associated salts spread over greater depths (150–270 cm) in Al-Ahmadiprofile due to variations in the sorting, structure and hydraulic conductivity ofthe two soils. The sharp decrease in salt concentration below the Gatch(caliche) layer suggests that this layer acts as a moisture barrier impeding anyfurther downward movement for oil/water and associated salts.Gypsum is the prime source of sulphate concentrations in the lower layersof the two soils. The flooding of oil fields by oil lakes containing sour crudeand the dry deposition of SO2 gas emitted as soot from the burnt oil couldprovide source to the sulphate concentrations in the topsoils of both profiles.  相似文献   

4.
北京东南郊再生水灌区土壤PAHs污染特征   总被引:1,自引:0,他引:1  
采用Eijkelkamp土壤采样器对北京东南郊再生水灌区进行了3个钻孔剖面采样,同时采集了灌溉用水及地下水样品,并采用气相色谱-质谱联用仪对16种多环芳烃(PAHs)进行定量分析。结果表明,表层土壤中有14种PAHs检出,浓度在0.4-53.1 μg·kg-1之间,∑PAHs平均含量为206.7 μg·kg-1,达到了土壤污染临界值;表层以下PAHs的检出种类和含量显著减少,以中、低环的萘、菲、芴、荧蒽、芘为主,∑PAHs仅占表层的3.8%-12.0%,从剖面PAHs含量变化可以判断,低环PAHs较易迁移,迁移性强弱顺序为萘、芴〉菲〉芘、荧蒽;污灌区表土中PAHs组成与大气降尘接近,但与再生灌区有明显差异,这种差异主要由于灌溉用水不同所造成;再生水灌区表土以下土壤剖面检出的PAHs与再生水中的PAHs一致,说明再生水灌溉是导致土壤剖面PAHs污染的主要原因,同时地下水中检出的PAHs种类也与土壤剖面基本一致,但含量较高,可能是早期污水灌溉所造成。  相似文献   

5.
An air-drying and rewetting (AW) experiment was used to examine the responses of soil properties and microbial activities to abrupt alteration of water availability between desert and oasis soils in northwest China. The results revealed that AW increased soil pH and available nitrogen and phosphorus but decreased soil organic matter in the desert, while available phosphorus increased and available nitrogen decreased in the oasis. This AW also caused a burst of microbial activity in both desert and oasis soils, and the magnitude of the AW effect was correlated with the extent of soil rewetting, incubation temperature, land use, and the interaction between rewetting moisture and incubation temperature. The responses of soil properties and microbial activity to AW were greater in the desert than in the oasis. Different soil properties and microorganism composition resulted from land-use change and were likely to be the causes of the different responses to AW in the desert and oasis soils.  相似文献   

6.
The micromorphological data on aridic soils are far from numerous; therefore, the information presented here contributes to the development of pedogenetic ideas and characterization of diagnostic horizons and genetic properties in substantive-genetic classification systems. The diversity, functioning, and resilience of aridic soils are basically determined by the properties of their topsoils, which are regarded as recent dynamic formations as opposed to subsoils that formed under a different paleoclimatic environment; topsoil properties are more important for soil classification. Each of the two upper horizons in the new system of soil classification (the light-humus and xero-humus) has the same micromorphological features in different soils; however, in a sequence of soils, some individual micromorphological properties were revealed that indicate increasing aridity. The micromorphological properties of topsoils make it possible to identify the mechanisms of certain phenomena: aeolian deposition, structural rearrangement, the dynamics of secondary carbonates, and cryptosolonetzic manifestations.  相似文献   

7.
We examined the interacting effects of drastic disturbance and re‐vegetation communities on the development of soil properties over time. We compared soil characteristics from an undisturbed reference site with reclaimed mine sites that differed by vegetation type and time since reclamation: Three sites were seeded solely with crested wheatgrass (Agropyron cristatum) (11, 16, and 29 years old), and two were seeded with native cool‐season grass mixes (14 and 26 years old). We sampled soil at two depths (0–5 and 5–15 cm) for soil macroaggregate and microaggregate weights, aggregate carbon to nitrogen (C : N) ratios, and microbial abundance. We employed a Bayesian bivariate model to account for potential correlations in soil properties across depths and compared soil properties across sites using posterior predictive distributions. We found that all reclaimed soils, regardless of vegetation type, had total aggregate weights that were similar to the undisturbed reference soil but had a larger proportion of macroaggregates than the reference soil. Aggregate C : N ratios were similar between the undisturbed reference and crested wheatgrass soils, while the reclaimed native cool‐season grass soils had lower C : N ratios in the top 5 cm. Total microbial abundance in soils seeded with crested wheatgrass was an order of magnitude lower than that in soils occupied by native species (both reclaimed and undisturbed). The presence of crested wheatgrass on the reclaimed sites alone did not differentiate all soil properties across our reclamation sites, but seeding this single, aggressive species may have contributed to maintaining different belowground characteristics on reclaimed soils. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
为了解粉煤灰充填复垦下农作物的生长状况,阐明复垦方式对土壤和农作物中重金属含量的影响,以淮南田集电厂粉煤灰为例,采用不同的覆土方式,以全土为对照,在5块试验田种植大豆和玉米,定期观察其长势,并利用ICP-AES和HF-AFS测得种植农作物后土壤、粉煤灰、大豆和玉米的茎叶和果实中的重金属含量。结果表明,各种充填方式下,表层土壤大部分重金属含量降低,而Hg和Se含量增多,并表现出随覆土厚度增大而减少的趋势;复合充填下层土壤中Hg的污染指数为5.732,明显高于其他充填方式;在覆土30cm的充填方式下,农作物的株高大于其他覆土方式;并且在覆土30、50cm方式下,作物的茎叶和果实中所含的重金属的量比较接近全土种植下作物中重金属水平。所以,相对于50cm的覆土方式,覆土30cm充填方式是采煤塌陷地带生态修复和燃煤电厂粉煤灰处置较为经济的方式,也是对农作物中重金属元素影响较小的措施。  相似文献   

9.
Abstract

Agricultural topsoils from the five soil categories of the Isle of Man (British Isles) have been fractionated at discrete particle size intervals and their mineral magnetic properties have been analyzed. The aim was to characterize Manx soils and, with the aid of simultaneous R‐ and Q‐mode factor analysis, evaluate the use of mineral magnetic measurements as an appropriate means of discriminating soil categories. Results show Manx agricultural topsoils contain a range of magnetic concentrations (similar to sedimentary and acid igneous rocks), magnetic mineralogy (greater influence of magnetically soft than magnetically hard minerals) and magnetic domain size (mainly stable single domain and superparamagnetic grains) characteristics, with significant differences between the five identified soil categories for each of the fractionated size class intervals used. Despite the mineral magnetic approach showing considerable potential for classifying Manx soils on the basis of their magnetic properties, large variations exist within individual soil categories. However, compared with previous studies, particle size specific measurements provide a more appropriate means of discrimination than bulk magnetic measurements. Each specific fractionated particle size range accommodates similar abilities of discrimination, yet no single class size is better than any other. Nevertheless, the ability of factor analysis to detect multivariate patterns in mineral magnetic data shows it is a useful data analysis tool for interrogating soil data sets.  相似文献   

10.
为揭示煤矿复垦区土壤氮素内循环中的矿化及硝化特征,探索不同复垦模式与不同复垦年限下复垦土壤的氮素转化效率,采集山西安太堡露天煤矿中复垦3年、9年、21年苜蓿地及3年荞麦地表层(0~20 cm)土壤,并以3年自然恢复和未复垦新排土为对照,采用间歇淋洗好气培养法与恒温培养法研究各采样地土壤矿化与硝化过程,利用一级反应动力学模型与Logistic方程对有机氮素的矿化与硝化数据进行拟合。结果表明,3年苜蓿地的矿化速率最高,21年苜蓿地的矿化速率最低,且土壤氮素快速矿化主要在培养前7 d,之后逐渐平缓,并在28 d趋于稳定。经一级动力学方程拟合可知,氮矿化势(No)的变化范围为89.28~124.51 mg·kg-1,21年苜蓿地 > 3年自然恢复地 > 3年苜蓿地 > 3年荞麦地 > 未复垦新排土 > 9年苜蓿地;矿化速率常数(k)的变化范围为0.022 6~0.051 9,3年苜蓿地 > 9年苜蓿地 > 未复垦新排土 > 3年自然恢复地 > 3年荞麦地 > 21年苜蓿地。氮矿化势与土壤有机质含量显著正相关(r=0.91)。复垦区各土壤随培养时间的延长硝态氮含量大致为"S"型曲线且可分为3个阶段:前期阶段(0~5 d)-上升阶段(5~14 d)-稳定阶段(14~28 d);Logistic方程拟合结果显示:复垦年限显著影响硝化高峰出现的时间(不同复垦年限苜蓿地最大相差6.85 d),21年苜蓿地硝化过程剧烈而短促,3年自然恢复地的硝化过程缓慢而漫长;耕地较草地有更大的硝化速率与更长的硝化时间。长期的种植苜蓿复垦显著提高了土壤的氮库容量,矿化过程更为平稳。  相似文献   

11.
騰格里沙漠地区沙地土壤微生物学特性的研究   总被引:3,自引:0,他引:3  
張憲武  許光輝 《土壤学报》1962,10(3):227-234
沙漠的严重危害主要是流沙的移动。因此,沙漠改造和治理中的重要工作之一。是采取各种措施固定流沙[1]。一般說来,固定流沙有两种方法:一种是植物固沙,一种是机械固沙。机械固沙是暂时的固沙法,为固定流沙不可缺少的一环;而植物固沙是一种最根本最可靠的永久固沙方法[2,3]流沙一经生长植物,它的基本性质就要改变,形成固定沙丘。这就为进一步改造利用沙漠,创造了先决条件。时的固沙法,为固定流沙不可缺少的一环;而植物固沙是一种最根本最可靠的永久固沙方法[2,3]流沙一经生长植物,它的基本性质就要改变,形成固定沙丘。这就为进一步改造利用沙漠,创造了先决条件。  相似文献   

12.
高潜水位平原区采煤塌陷地复垦土壤形态发育评价   总被引:9,自引:2,他引:7  
土壤的形态特征含有丰富的环境信息,是环境变化与生态重建的重要依据,可以推断土壤发育的强弱。矿山复垦土壤为人造新土壤,可能构造出不同的土壤形态,复垦土壤形态特征的研究对复垦土壤生产力的提高和复垦技术的革新具有重要意义。该文以高潜水位平原区采煤塌陷地复垦土壤为研究对象,探讨定量评价复垦土壤形态发育状况。研究采用实地调查和室内分析相结合的方法,依据中国土壤系统分类用土壤剖面描述标准,构建了复垦土壤形态发育评价体系,进行土壤形态定量评价。结果表明,形态发育指数HI(土层发育指数)和WPDI(土壤权重剖面发育指数)能够较好的反映复垦土壤与当地原状土壤的发育程度差异:复垦土壤土层发育指数HI和土壤权重剖面发育指数WPDI平均值分别为0.57、0.56,而当地原状土壤HI和WPDI的平均值为0.68、0.69,表明复垦土壤形态发育程度相对较弱;HI曲线形状异于原状土壤,表层HI高于其他土层,不同复垦方式的WPDI显示的发育程度序列为:充填复垦(外源土)>挖深垫浅>挖深垫浅(泥浆泵)>充填复垦(粉煤灰、煤矸石等);随复垦时间的延长,复垦土壤发育程度呈现增长趋势。  相似文献   

13.
黄土区大型露天煤矿煤矸石自燃对复垦土壤质量的影响   总被引:6,自引:3,他引:3  
为了研究煤矸石自燃对复垦土壤质量的影响,以复垦13 a的平朔安太堡露天矿区南排土场1420平台正常复垦土壤与自燃退化土壤为研究对象,分析研究了煤矸石自燃对复垦土壤的理化性质、重金属含量、土壤微生物区系和土壤酶活性的影响,并选取原地貌土壤为参照。研究结果表明, 煤矸石自燃对复垦土壤的物理性状影响很大。土壤体积质量、总孔隙度、毛管孔隙度与非毛管孔隙度、田间持水率发生突变。南排1420煤矸石自燃复垦土壤的体积质量显著比正常平台和原地貌土壤的要小,总孔隙度要大,而且主要是非毛管孔隙度,表层土壤和20~40 cm的土壤的非毛管孔隙度高达42.08%和39.49%,远高于正常平台和原地貌土壤,而毛管孔隙度仅有16.41%和15.60%,远低于正常平台和原地貌土壤,田间持水率仅为14.92%和13.11%,为正常平台复垦土壤的47.76%和39.95%。煤矸石自燃可以降低复垦土壤的有机质、速效磷质量分数以及pH值,而提高复垦土壤表层速效钾的质量分数。煤矸石自燃可增加复垦土壤0~20 cm中Pb、Cr、Hg的质量分数,特别是Cr和Hg的质量分数略高出土壤环境质量一级标准。煤矸石自燃对土壤微生物数量影响甚大,煤矸石自燃复垦土壤微生物数量极少,仅为正常平台复垦土壤的0.82%,其中细菌为正常平台复垦土壤的0.80%,放线菌为1.64%,真菌为1.24%。煤矸石自燃可大大降低复垦土壤的过氧化氢酶和蔗糖水解酶活性,特别是蔗糖水解酶活性,而表层复垦土壤的脲酶活性略有提高。总之,煤矸石自燃造成复垦土壤极度退化,大大降低了复垦土壤的质量。  相似文献   

14.
The effect of soil contamination with black oil added in amounts of 0.1, 0.5, 1.0, 2.5, 5, 10, 25, and 50% of the soil mass on the biological properties of ordinary and leached vertic chernozems, brown forest soils, and gray sands in the south of Russia was studied in a model laboratory experiment. It was shown that the soil contamination causes a drop in the catalase and dehydrogenase activities, the cellulolytic capacity, the number of Azotobacter bacteria, and the characteristics of the plant germination. The ordinary and vertic chernozems were more tolerant toward the contamination than the gray sands and brown forest soils. The changes in the biological soil properties in dependence on the degree of the soil contamination differed considerably for the soils with different properties (the chernozems, brown forest soil, and gray sands) and were similar for the soils with similar properties (the ordinary and vertic chernozems). One soil (the brown forest soil) could be more tolerant toward the contamination than another soil (the gray sands) at a given concentration of black oil (<2.5%) and less tolerant at another concentration of black oil (>2.5%). The ecologically safe levels of the soil contamination with black oil do not exceed 0.7% in the ordinary chernozems, 0.3% in the compact chernozems, 0.1% in the brown forest soils, and 0.06% in the gray sands.  相似文献   

15.
Initial soil development in loess and harbourbasin mud reclaimed by slurry poldering In the Rhenish Brown Coal Strip Mining Area initial soil development was investigated for 6–15 and 15–25 years old loamy-silty loess soils reclaimed by slurry poldering. In the Emden environs the same analyses were applied to 6, 17, and 28 years old silty-clayey harbour-mud soils, also reclaimed by slurry application. The most prominent results when comparing these two types of soil are as follows: The mud soils show higher contents of clay and organic matter. Therefore they reveal more favourable characteristics concerning cation-exchange capacity, soil physical and soil biological properties in comparison to those of the loess soils. In both types of soils cation-exchange-capacity and soil biological activity increase in the Ap-horizon over time. The soil physical characteristics of the mud soils markedly improve in the run of the development, whereas those of the loess soils hardly improve. It remains a subject of discussion, since what stage of development mud soils should be classified as sea-marshes/“Kleimarschen” and loess soils as rendzinas.  相似文献   

16.
Soil erosion by water causes substantial on‐site degradation and off‐site damages in the densely populated state of North Rhine‐Westphalia (Germany). Measures of soil conservation should be adjusted to soil erodibilities and should be based on an understanding of the processes involved in water erosion including aggregate breakdown, rainsplash erosion, surface sealing, and soil loss. For a state‐wide assessment of erosion processes and erodibilities, we tested representative cultivated soils of North Rhine‐Westphalia in laboratory and field experiments with artificial rain. In the laboratory experiments described in this paper, rainsplash erosion, sealing susceptibility, and interrill erodibility of 25 topsoils filled in 0.5 m2 boxes were investigated. Results of different aggregate‐stability tests correlate with organic‐matter contents but not with parameters of rainsplash or soil loss. On most soil materials, rainsplash increases or maintains constant rates in the course of the simulation runs indicating that the soil surface did not attain a higher shear resistance. High sealing susceptibilities are found for soils of quite different textures ranging from loam sand to silt clay, whereas other silt clays, clay loams, and some clay silts maintain high infiltration rates. A trend of increasing sealing susceptibility and total soil loss with increasing clay content is observed for the loam sands to sand loams. Dynamics of soil loss is largely governed by runoff rates. Total soil loss is also determined by sediment concentration in surface runoff, which is low on most clayey soils, on loam sands poor in clay, and on a sand loam, and high in the case of highly erodible clay silts, loam sands, and sand loams. The most crust prone soils are not necessarily the most erodible. On most soils, soil‐loss rates do not stabilize until the end of the rainfall experiments. For comparing the interrill erodibilities of the soils, total soil loss is preferred instead of interrill erodibility factors (Ki, Kiq) published in the literature.  相似文献   

17.
During surface mining and subsequent reclamation efforts, physical, chemical, and biological properties of soils are disturbed. A study was conducted to evaluate the effects of age chronosequence on soil physical property and microbial activity in chronosequence reclaimed sites covering successional ages in the ranges 1, 4, 8, 11, and 13 years under forest and pasture ecosystems. The adjacent normal and unmined pasture and forest were used as a control for comparison purposes. The study site was located at the Red Hill Mine in east central Mississippi (approximately 33.3 N latitude and 89 W longitude), which is used by the North America Mining Company, LLC. Soil samples were collected from the reclaimed and unmined sites at 0–15- and 15–30-cm depth and analyzed for selected soil quality indicators. Results indicated that water stable aggregate and infiltration were increased, but soil bulk density and compaction decreased with increasing reclamation age. Soil penetration resistance was greater in the pasture than forest ecosystem. All reclaimed soils had less microbial enzyme activity than an unmined forest ecosystem; however, bacteria population level after 11 years since reclamation was similar to that of unmined forest soils. Soil organic carbon increased with increasing reclamation age strongly correlated with soil physical indicators and appears to be the main driving force during the development of soil physical and biological properties in the humid southeast.  相似文献   

18.
新疆土壤微量元素的含量与分布   总被引:4,自引:0,他引:4  
本文论述了新疆土壤中Fe,Mn,Zn,Cu全量和有效态含量及其分布.Fe的全量0.3-5.1%(平均值为2.4%),有效态含量0.16-504.00ppm(18.20ppm);Mn的全量59-1550ppm(564ppm),有效态含量0.38-41.60ppm(4.86ppm);zn的全量9-216ppm(75ppm),有效态含量0.08-11.84ppm(1.00ppm);Cu的全量5-145ppm(28ppm),有效态含量0.06-19.20ppm(1.22ppm).  相似文献   

19.
Black carbon (BC), composed of char and soot, is an important component of soil organic carbon (SOC), and these materials are potentially important for the global carbon cycle and global climate. A thermal‐optical reflectance method was used to determine the spatial patterns of SOC, BC, char and soot in nine soil types collected from 152 sites in the Qinghai Lake catchment. All of the analytes showed large spatial variability: SOC, BC and char were most abundant in bog soils and least abundant in aeolian soils, while soot concentrations in alpine frost desert and in aeolian soils were about half of those in the other soils. The average BC concentration in the 0–20‐cm soil layers was 1.3 g kg?1, and BC amounted to 5.6% of the SOC. Char, SOC and BC all decreased with soil depth, but soot showed little variation. The proportions of BC to SOC and char to BC showed contrasting trends in four soil profiles; the former increased and the latter decreased with depth. The quantity of SOC sequestered in topsoils of the catchment area was estimated to be 191 Tg; BC accounted for approximately 4.8% of this, and char made up approximately 85% of the total BC stock. The burning of animal dung for domestic cooking apparently was an important source of soil BC: combustion of other biofuels and fossil fuels was the other main source.  相似文献   

20.
The characteristics are given of the prokaryotic complex participating in the processes of the primary soil formation on nepheline-containing waste and depending on the time of the waste disposal and degree of reclamation. The total population density of the bacteria determined with the method of fluorescent microscopy in “pure” sand ranged within 0.34—0.60 billion CFU/g soil; in the reclaimed sand under different vegatation communities, from 2.6 to 7.2 billion CFU/g soil. Gram-positive bacteria dominate in the prokaryotic complex of the nepheline sands, whereas the Grarrmegative ones dominate in the zonal soils. The bacteria predominating in the nepheline sands were classified on the basis of the comparative analysis of the nucleotide sequences in the 16S rRNA genes within the Actinobacteria class (Arthrobacter boritolerans, A. ramosus, Rhodococcusfascians, Micrococcus luteus, and Streptomyces spp.). The evolution of the microbial community in the nepheline sands in the course of their reclamation and in the course of their overgrowing by plants proceeds in way toward the microbial communities of the zonal soils on moraine deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号