首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OBJECTIVE: To determine effects of glucosamine and acetylsalicylate on canine chondrocytes in 3-dimensional culture. SAMPLE POPULATION: Chondrocytes isolated from articular cartilage of 2 adult female dogs recently euthanatized for reasons unrelated to orthopedic abnormalities. PROCEDURE: Chondrocytes were cultured in a 3-dimensional agarose-based medium alone (control), with glucosamine (100 microg/ml; GL), or with acetylsalicylate (18 microg/ml; AS). Supernatant and agarose plugs from 4 wells/group/d were collected on days 3, 6, and 12 of culture. Agarose plugs were evaluated for percentage of viable cells, percentage of cells producing pericellular or territorial matrix, glycosaminoglycan (GAG) concentration, and type-II collagen production. Prostaglandin E2 concentration in supernatants was determined. RESULTS: Chondrocytes in all groups had characteristics indicative of viability and differentiation; however, on day 12, a lower percentage of viable cells was detected in the AS group, compared with the other 2 groups. On day 6, GAG concentration in the AS group was significantly greater than concentrations in the other 2 groups. On day 12, GAG concentrations in the GL and AS groups were significantly less than in the control group. Within the GL and AS groups, cell viability was significantly less on day 12, compared with day 3. Significant differences in PGE2 concentration among or within groups and evidence of type II collagen production were not detected. CONCLUSIONS: 3-dimensional culture of canine chondrocytes allows for production of hyaline cartilage matrix constituents and growth of cells with morphologic characteristics similar to those of articular cartilage. Acetylsalicylate and glucosamine, at the single concentration evaluated, had detrimental effects on chondrocyte viability, GAG production, or both.  相似文献   

2.
OBJECTIVE: To investigate the effects of enrofloxacin and magnesium deficiency on explants of equine articular cartilage. SAMPLE POPULATION: Articular cartilage explants and cultured chondrocytes obtained from adult and neonatal horses. PROCEDURE: Full-thickness explants and cultured chondrocytes were incubated in complete or magnesium-deficient media containing enrofloxacin at concentrations of 0, 1, 5, 25, 100, and 500 microg/ml. Incorporation and release of sulfate 35S over 24 hours were used to assess glycosaminoglycan (GAG) synthesis and degradation. An assay that measured binding of dimethylmethylene blue dye was used to compare total GAG content between groups. Northern blots of RNA from cultured chondrocytes were probed with equine cDNA of aggrecan, type-II collagen, biglycan, decorin, link protein, matrix metalloproteinases 1, 3, and 13, and tissue inhibitor of metalloproteinase 1. RESULTS: A dose-dependent suppression of 35S incorporation was observed. In cartilage of neonates, 35S incorporation was substantially decreased at enrofloxacin concentrations of 25 mg/ml. In cartilage of adult horses, 35S incorporation was decreased only at enrofloxacin concentrations of > or =100 microg/ml. Magnesium deficiency caused suppression of 35S incorporation. Enrofloxacin or magnesium deficiency did not affect GAG degradation or endogenous GAG content. Specific effects of enrofloxacin on steady-state mRNA for the various genes were not observed. CONCLUSION AND CLINICAL RELEVANCE: Enrofloxacin may have a detrimental effect on cartilage metabolism in horses, especially in neonates.  相似文献   

3.
OBJECTIVE: To determine the effects of interleukin (IL)-1beta on matrix synthesis and degradation by chondrocytes cultured in a 3-dimensional (3-D) gel medium. SAMPLE POPULATION: Chondrocytes from 7 dogs. PROCEDURE: Articular chondrocytes were harvested and cultured in 3-D gel medium alone or with 10 or 20 ng IL-1beta/ml that was added beginning on day 0, 3, 6, or 9. On days 3, 6, 12, and 20 of 3-D culture, samples of the liquid medium were evaluated for glycosaminoglycan (GAG), prostaglandin E2 (PGE2), and matrix metalloprotease (MMP)-3 content. The 3-D plug in each well was evaluated for histologic characteristics of viability, cell morphology, and proteoglycan staining, immunohistochemically stained for collagen type II, and spectrophotometrically analyzed for GAG content. RESULTS: Significant differences for all variables were detected between controls and each IL-1beta group, among groups with different IL-1beta concentrations, and among groups with IL-1beta added at various time points. Chondrocytes exposed to IL-1beta had loss of GAG, increased PGE2 and MMP-3 concentrations, and lack of collagen type-II synthesis. These IL-1beta effects appeared to be time and concentration dependent. CONCLUSIONS: Addition of IL-1beta to chondrocytes in 3-D gel medium results in time- and concentration-dependent effects on matrix synthesis and degradation and provides an appropriate in vitro model for many of the pathophysiologic events associated with osteoarthritis.  相似文献   

4.
OBJECTIVE: To determine response of interleukin-1alpha (IL-1alpha)-conditioned equine articular cartilage explants to insulin-like growth factor-1 (IGF-1). Sample Population-Cartilage from the trochlea and condyles of the femur of a clinically normal 4-year-old horse. PROCEDURE: Effects of IGF-1 (0 to 500 ng/ml) after addition of IL-1alpha were evaluated by assessing matrix responses, using a sulfated glycosaminoglycan (GAG) assay, matrix 35SO4 GAG incorporation, and release of GAG. Mitogenic response was assessed by 3H-thymidine incorporation into DNA and fluorometric assay of total DNA concentration. RESULTS: Human recombinant IL-1alpha (40 ng/ml) increased the amount of labeled GAG released and decreased labeled and total GAG remaining in explants, and IL-1alpha decreased mitogenic response. Addition of IGF-1 counteracted effects seen with IL-1alpha alone. In general, IGF-1 decreased total and labeled GAG released into the medium, compared with IL-1alpha-treated explants (positive-control sample). Values for these variables did not differ significantly from those for negative-control explants. A significant increase in total and newly synthesized GAG in the explants at termination of the experiment was observed with 500 ng of IGF-1/ml. Labeled GAG remaining in explants was greater with treatment at 50 ng of IGF-1/ml, compared with treatment with IL-1alpha alone. Concentrations of 200 ng of IGF-1/ml abolished actions of IL-1alpha and restored DNA synthesis to values similar to those of negative-control explants. CONCLUSIONS AND CLINICAL RELEVANCE: IGF-1 at 500 ng/ml was best at overcoming detrimental effects associated with IL-1alpha in in vitro explants. These beneficial effects may be useful in horses with osteoarthritis.  相似文献   

5.
OBJECTIVE: To determine the morphologic and phenotypic effects of transforming growth factor beta1 (TGFbeta1) on cultured equine mesenchymal stem cells (MSC) and articular chondrocytes. SAMPLE POPULATION: Bone marrow aspirates and articular cartilage samples from a 2-year-old and two 8-month-old horses. PROCEDURE: After initial isolation and culture, MSC and chondrocytes were cultured in Ham's F-12 medium supplemented with TGF-beta1 at a concentration of 0, 1, 5, or 10 ng/ml. Medium was exchanged on day 2, and cells were harvested on day 4. Medium was assayed for proteoglycan (PG) content. Total RNA was isolated from cell cultures, and expression of aggrecan, decrin, collagen type-I, and collagen type-II mRNA was assessed by means of Northern blot analyses. Cell cultures were stained with H&E or toluidine blue and examined histologically. Additional cultures were examined after immunohistochemical staining for type-I and -II collagen. RESULTS: MSC cultures exposed to TGF-beta1 had an increased cellular density with cell layering and nodule formation that was most pronounced in cultures treated with 5 ng of TGF-beta1/ml. Expression of collagen type-II mRNA in MSC cultures exposed to 5 ng of TGF-beta1/ml was 1.7 times expression in control cultures, and expression of collagen type-I mRNA was 2.8 times expression in control cultures. Treatment of MSC with TGF-beta1 led to dose-related increases in area and intensity of type-II collagen immunoreaction. CONCLUSION: Results suggest that TGF-beta1 enhances chondrogenic differentiation of bone marrow-derived MSC in a dose-dependent manner.  相似文献   

6.
OBJECTIVE: To determine whether enrofloxacin has detrimental, dose-dependent effects on equine articular cartilage in vitro. ANIMALS: Cartilage explants were developed from 6 healthy horses between 0 and 96 months old. PROCEDURE: Patellar cartilage explants were incubated in 5 concentrations of enrofloxacin (2 microg/ml, 10 microg/ml, 1,000 microg/ml, 10,000 microg/ml, and 50,000 microg/ml) for 72 hours. Proteoglycan synthesis (Na35SO4 incorporation for 24 hours), proteoglycan degradation (Na35SO4 release for 72 hours), endogenous proteoglycan content (dimethylmethlene blue assay), and total protein content were determined. Cartilage explants were evaluated by use of histomorphologic and histomorphometric techniques (toluidine blue stain) for cytologic and matrix characteristics. Quantitative data were analyzed with a one-way ANOVA to compare results among various enrofloxacin concentration groups and the control group. A general linear model was used to determine whether age had an effect. RESULT: Proteoglycan synthesis was excellent in control specimens and in specimens incubated in low concentrations of enrofloxacin (2 microg/ml and 10 microg/ml). High concentrations of enrofloxacin (> 1,000 microg/ml) effectively eliminated proteoglycan synthesis regardless of horse age. Proteoglycan degradation at low concentrations (2 microg/ml and 10 microg/ml) was not different than control. High concentrations of enrofloxacin (> 1,000 microg/ml) caused significant degradation. Different concentrations of enrofloxacin did not affect endogenous proteoglycan. High concentrations of enrofloxacin were associated with a significant increase in number of pyknotic nuclei. CONCLUSION: Concentrations of enrofloxacin that might be achieved following systemic administration did not suppress chondrocyte metabolism in vitro. High concentrations of enrofloxacin (> 1,000 microg/ml) were toxic to chondrocytes.  相似文献   

7.
REASONS FOR PERFORMING STUDY: Clinical trials in human and veterinary literature have documented the benefits of oral nutraceutical joint supplements containing glucosamine (GU) and chondroitin sulphate (CS) to treat mild to moderate osteoarthritis, but the effects of these components have not yet been conclusively determined. OBJECTIVES: To assess varying dosages of GU and CS on normal and interleukin-1alpha (IL-1) conditioned equine cartilage explants and rationalise the use of these products. HYPOTHESIS: Treatment would not be detrimental to cartilage metabolism and higher dosages and the combination of GU and CS would be more beneficial than lower dosages and. GU or CS alone. METHODS: Articular cartilage explants collected from the femoral trochlea and condyles were cultured in normal and IL-1 conditioned media. Treatment groups included 0, 12.5, 25,125 and 250 microg/ml concentrations of GU alone, CS alone, or GU+CS in combination. Glycosaminoglycan (GAG) synthesis and total GAG content in the explants and media were analysed. RESULTS: There were no detrimental effects of GU, CS or GU+CS on cartilage metabolism. High dosages of GU+CS reduced total GAG release into the media (degradation). CONCLUSIONS: Our results suggests that GU+CS may prevent cartilage GAG degradation. POTENTIAL RELEVANCE: The combination of GU and CS may be more effective in preventing or treating osteoarthritis in horses than either product alone.  相似文献   

8.
铜对体外仔猪软骨细胞增殖和细胞骨架的影响   总被引:1,自引:0,他引:1  
体外分离、培养仔猪关节软骨细胞,在细胞培养液中分别添加铜0、7.8、15.6、31.2、62.5μmol/L。结果表明,软骨细胞在4种铜浓度中可存活并增殖,但随铜浓度的增加,其存活率、增殖率、3H-TdR掺入率有明显的差异,且能破坏软骨细胞骨架。培养液中添加铜31.2μmol/L,对软骨细胞的增殖作用最强,增殖率、3H-TdR掺入数显著高于对照组(P<0.01),软骨细胞形态及骨架均正常。表明31.2μmol/L铜浓度是促进体外软骨细胞增殖的最适浓度。  相似文献   

9.
The concentration-effect relationships of phenylbutazone, indomethacin, betamethasone, pentosan polysulphate (PPS) and polysulphated glycosaminoglycan (PSGAG), on proteoglycan synthesis by equine cultured chondrocytes grown in monolayers, and articular cartilage explants were measured. The effect of PSGAG on interleukin-1beta induced suppression of proteogycan synthesis was also investigated. Proteoglycan synthesis was measured by scintillation assay of radiolabelled sulphate (35SO4) incorporation. Polysulphated glycosaminoglycan and PPS stimulated proteoglycan synthesis in chondrocyte monolayers in a concentration-related manner with maximal effects being achieved at a concentration of 10 microg/mL. Polysulphated glycosaminoglycan reversed the concentration-related suppression of proteoglycan synthesis induced by interleukin-1beta. Neither PSGAG nor PPS exerted significant effects on radiolabel incorporation in cartilage explants. Betamethasone suppressed proteoglycan synthesis by both chondrocytes and explants at high concentrations (0.1-100 microg/mL), but the effect was not concentration-related. At low concentrations (0.001-0.05 microg/mL) betamethasone neither increased nor decreased proteoglycan synthesis. Phenylbutazone and indomethacin increased radiolabel incorporation in chondrocyte cultures but not in cartilage explants at low (0.1, 1 and 10 microg/mL), but not at high (20 and 100 microg/mL) concentrations. These findings may be relevant to the clinical use of these drugs in the treatment of equine disease.  相似文献   

10.
OBJECTIVE: To investigate the effects of insulin-like growth factor-II (IGF-II) on DNA and glycosaminoglycan (GAG) synthesis and the expression of matrix-related genes in equine articular cartilage explants and chondrocytes, respectively, with and without interleukin 1-beta (IL1-beta). SAMPLE POPULATION: Articular cartilage from 12 adult horses. PROCEDURE: Articular cartilage was incubated in standard media with and without equine IL1-beta (10 ng/mL) containing various concentrations of IGF-II for 72 hours. Synthesis of DNA and GAG was determined by incorporation of thymidine labeled with radioactive hydrogen (3H) and sulfate labeled with radioactive sulfur (35S), respectively. Total GAG content of the explants and spent media was determined by use of the 1,9-dimethylmethylene blue assay. Northern blots of RNA from cultured equine articular cartilage chondrocytes were hybridized with cDNA of major matrix molecules. RESULTS: Insulin-like growth factor-II stimulated DNA and GAG synthesis at concentrations of 25 and 50 ng/mL, respectively. In cartilage explants conditioned with IL1-beta, IGF-II stimulated DNA and GAG synthesis at concentrations of 500 and 50 ng/mL, respectively. Insulin-like growth factor-II had no effect on total GAG content as determined by the 1,9-dimethylmethylene blue assay. No specific effects on steady-state levels of messenger RNAs were observed. CONCLUSIONS AND CLINICAL RELEVANCE: Insulin-like growth factor-II stimulated DNA and GAG synthesis in equine adult cartilage and may have potential application in vivo.  相似文献   

11.
REASONS FOR PERFORMING STUDY: Osteoarthritis is a frequent sequela of joint disease, especially with severe injuries or if attempts at therapy are unsuccessful. Negative and positive effects of corticosteroid treatment of articular cartilage have been demonstrated by in vitro and in vivo studies. OBJECTIVES: To assess the metabolic effects of varying dosages of methylprednisolone acetate (MPA) and triamcinolone acetonide (TA) on interleukin-1alpha (IL-1) conditioned equine cartilage explants. Our hypothesis was that lower dosages of corticosteroids would be less detrimental to cartilage metabolism than higher dosages. TA would be less detrimental to cartilage metabolism than MPA. METHODS: Treatment groups included articular cartilage explants with no IL-1 (control), IL-1 alone, and IL-1 plus 10, 5, 1 and 0.5 mg/ml MPA or 1.2, 0.6, 0.12 and 0.06 mg/ml TA. Explants were labelled with 35SO4 prior to the beginning and end of the experiment to assess glycosaminoglycan (GAG) degradation and synthesis, respectively. Total GAG content in media and explants and total cartilage DNA were also analysed. RESULTS: MPA and TA reduced GAG synthesis compared to control and IL-1 alone. The highest dosage of MPA (10 mg/ml) reduced GAG synthesis less than lower dosages of MPA and all dosages of TA. Compared to IL-1 alone, all dosages of TA and lower dosages of MPA increased GAG degradation. MPA at 10 mg/ml reduced GAG degradation. Both MPA and TA increased media GAG content compared to control and IL-1 explants. Total cartilage GAGs were unchanged with MPA, but reduced with TA, compared with IL-1 alone. Total cartilage DNA was decreased with MPA and increased with TA compared to IL-1 and control explants. CONCLUSIONS: MPA and TA did not counteract the negative effects of IL-1 and did not maintain cartilage metabolism at control levels. Lower dosages of MPA and TA were not less detrimental to cartilage metabolism than higher dosages. TA did not appear to be less harmful than MPA on cartilage metabolism. The results of this study differ from the findings of comparable in vivo studies. POTENTIAL RELEVANCE: The low numbers of horses used in this study limits extrapolation of these findings to the equine population; however, this study also questions the clinical relevance of this in vitro model.  相似文献   

12.
OBJECTIVES: To evaluate the effects of equine recombinant interleukin-1alpha (rEqIL-1alpha) and recombinant interleukin-1beta (rEqIL-1beta) on proteoglycan metabolism and prostaglandin E2 (PGE2) synthesis by equine articular chondrocytes in explant culture. SAMPLE POPULATION: Near full-thickness articular cartilage explants (approx 50 mg) harvested from stifle joints of a 3-year-old and a 5-year-old horse. PROCEDURE: Expression constructs containing cDNA sequences encoding EqIL-1alpha and EqIL-1beta were generated, prokaryotically expressed, and the recombinant protein purified. Near full-thickness articular cartilage explants (approx 50 mg) harvested from stifle joints of a 3-year-old and a 5-year-old horse were separately randomized to receive rEqIL-1alpha or rEqIL-1beta treatments 10 to 500 ng/ml). Proteoglycan release was evaluated by 1,9-dimethylmethylene blue spectrophotometric analysis of explant media glycosaminoglycan (GAG) concentration and release of 35S-sulfate-labeled GAG to explant media. Proteoglycan synthesis was assessed by quantification of 35S-sulfate incorporation into proteoglycan. Explant media PGE2 concentrations were evaluated using a PGE2-specific enzyme-linked immunoassay. Data were collected at 48-hour intervals and normalized by DNA content. RESULTS: Proteoglycan release was induced by rEqIL-1alpha and rEqIL-1beta at concentrations > or =0.1 ng/ml, with 38 to 76% and 88 to 98% of total GAG released by 4 and 6 days, respectively. Inhibition of proteoglycan synthesis (42 to 64%) was observed at IL-1 concentrations > or = 0.1 ng/ml at 2 and 4 days. Increased PGE2 concentrations were observed at IL-1 concentrations > or = 0.1 ng/ml at 2 and 4 days. CONCLUSIONS AND CLINICAL RELEVANCE: The rEqIL-1 induced potent concentration-dependent derangement of equine chondrocyte metabolism in vitro. These findings suggest this model may be suitable for the in vitro study of the pathogenesis and treatment of joint disease in horses.  相似文献   

13.
OBJECTIVE: To determine the effects of sodium hyaluronate (HA) in combination with methylprednisolone acetate (MPA) on interleukin-1 (IL-1)-induced inflammation in equine articular cartilage pellets. Sample POPULATION: Chondrocytes collected from 7 horses euthanatized for problems unrelated to the musculoskeletal system. PROCEDURES: Chondrocyte pellets were treated with medium (negative control); medium containing IL-1 (positive control); or medium containing IL-1 with MPA only (0.05 or 0.5 mg/mL), HA only (0.2 or 2 mg/mL), or MPA (0.05 or 0.5 mg/mL) and HA (0.2 or 2 mg/mL) in combination. Proteoglycan (PG) synthesis was determined by incorporation of sulfur 35-labeled sodium sulfate into PGs. Glycosaminoglycan (GAG) content of the media and the pellets and total pellet DNA content were determined. RESULTS: Methylprednisolone acetate at 0.5 mg/mL caused an increase in PG synthesis, whereas HA had no effect alone. The combination of MPA, both 0.05 mg/mL and 0.5 mg/mL, with HA at 2 mg/mL increased PG synthesis, compared with IL-1-treated control. All treatment groups containing the high concentration of MPA (0.5 mg/mL) and the high concentration of HA (2.0 mg/mL) had pellets with increased GAG content. The addition of HA caused an increase in total GAG content in the media, regardless of MPA treatment. Cyclooxygenase-2 mRNA and aggrecan mRNA expression was significantly reduced with MPA treatment. Total pellet DNA content was unchanged by any treatment. CONCLUSIONS AND CLINICAL RELEVANCE: Our results indicate that MPA in combination with HA has beneficial effects on PG metabolism of IL-1-treated equine chondrocytes.  相似文献   

14.
OBJECTIVE: To study chondrotoxic effects of enrofloxacin (ENR) and ciprofloxacin hydrochloride (CFX) on canine and equine articular chondrocytes in culture and to compare the effects with that of cultivation in Mg2+-free medium. SAMPLE POPULATION: Chondrocytes from articular cartilage of 4- and 6 -month old dogs and 2- to 4- year-old horses. PROCEDURE: Chondrocytes were cultivated with 10, 40, 80, and 160 microg of CFX/ml, 10, 50, 100, and 150 microg of ENR/ml, or in Mg2+-free medium. A live-to-dead test was performed to test cytotoxic effects. Morphologic changes were evaluated by electron microscopy. An attachment assay was used to test the ability of chondrocytes to adhere to collagen type-II coated-chamber slides in the presence of CFX and with Mg2+-free medium. RESULTS: Chondrocytes cultivated in quinolone-supplemented medium or Mg2+-free medium had a decreased ability to adhere to culture dishes. Cell shape and the actin and vimentin cytoskeleton changed in a concentration-dependent manner. These effects were not species-specific and developed with both quinolones. On day 1 of culture, adhesion of chondrocytes to collagen type II was reduced to 70 and 45% of control values in the CFX treatment and Mg2+-free treatment groups, respectively. On day 5 of culture, adhesion of chondrocytes was reduced to 45 and 40% of control values in the CFX treatment and Mg2+-free treatment groups, respectively. CONCLUSION AND CLINICAL RELEVANCE: In vitro, chondrotoxic effects of quinolones appear to be the result of irregular integrin signaling and subsequent cellular changes. Drug concentrations leading to morphologic changes in vitro may be achieved in articular cartilage in vivo.  相似文献   

15.
Chondrocytes dedifferentiate to a fibroblast‐like phenotype on plastic surfaces. Dedifferentiation is reversible if these cells are then cultured embedded in gels as alginate, agarose or collagen. Chondrocytes cultured in suspension on a non‐adherent surface are also known to form aggregates of differentiated cells. The knowledge of chondrocyte behavior in culture is relevant for tissue engineering purposes. In this report we describe a simple method to culture differentiated or redifferentiated rabbit auricular chondrocytes on plastic surfaces with a stable phenotype. When chondrocyte aggregates formed in suspension are next seeded on plastic surfaces, most of them attach to the plastic as round or polygonal cells, and this morphological differentiation, confirmed by the presence of type II collagen, is stable for long culture periods. We also report that the addition of aggregates to monolayer cultures of dedifferentiated chondrocytes results in their redifferentiation, as is shown by their morphological changes and the synthesis of type II collagen. Therefore, this simple method can be useful for the study of chondrocyte behavior on plastic surfaces and for redifferentiating previously proliferated chondrocytes in tissue engineering techniques. Furthermore, these results demonstrate that, in addition to culture conditions such as cell isolation method or cell‐density, chondrocyte behavior on plastic depends on the presence or absence of aggregates resulting from the dissociation process.  相似文献   

16.
17.
Chondrocytes dedifferentiate to a fibroblast-like phenotype on plastic surfaces. Dedifferentiation is reversible if these cells are then cultured embedded in gels as alginate, agarose or collagen. Chondrocytes cultured in suspension on a non-adherent surface are also known to form aggregates of differentiated cells. The knowledge of chondrocyte behavior in culture is relevant for tissue engineering purposes. In this report we describe a simple method to culture differentiated or redifferentiated rabbit auricular chondrocytes on plastic surfaces with a stable phenotype. When chondrocyte aggregates formed in suspension are next seeded on plastic surfaces, most of them attach to the plastic as round or polygonal cells, and this morphological differentiation, confirmed by the presence of type II collagen, is stable for long culture periods. We also report that the addition of aggregates to monolayer cultures of dedifferentiated chondrocytes results in their redifferentiation, as is shown by their morphological changes and the synthesis of type II collagen. Therefore, this simple method can be useful for the study of chondrocyte behavior on plastic surfaces and for redifferentiating previously proliferated chondrocytes in tissue engineering techniques. Furthermore, these results demonstrate that, in addition to culture conditions such as cell isolation method or cell-density, chondrocyte behavior on plastic depends on the presence or absence of aggregates resulting from the dissociation process.  相似文献   

18.
REASONS FOR PERFORMING STUDY: Chondrocytes within articular cartilage respond to the mechanical stresses associated with normal joint loading via a series of signalling pathways. Specific biomolecules, such as nitric oxide (NO), have been implicated in these mechanotransduction processes. It has been shown that the synthesis of NO can be inhibited by dynamic compressive strain of chondrocytes in vitro which, in turn, leads to an up-regulation of specific metabolic parameters. HYPOTHESIS: Chondrocytes isolated from different joint locations and seeded in agarose constructs respond in a distinct manner to the application of dynamic compression. METHODS: Chondrocytes were isolated separately from the equine patella groove and the femoral condyle, representing high loaded areas (HLA) and low loaded areas (LLA), respectively, of 6 specimens of different ages. The cells were seeded in agarose constructs and cultured either in an unstrained state or strained under dynamic loading at 1 Hz for 48 h. The synthesis of nitric oxide (NO), proteoglycan synthesis and chondrocyte proliferation were assessed. RESULTS: Equine chondrocytes were found to synthesise significant basal levels of NO, regardless of topographical origin or age of tissue. Marked differences in both proteoglycan synthesis and cell proliferation were, however, revealed between the 2 chondrocyte subpopulations. Dynamic compression inhibited NO synthesis but significant alterations in proteoglycan synthesis and cell proliferation were apparent in a minority of cases. CONCLUSIONS AND POTENTIAL RELEVANCE: The differential response of the subpopulations of chondrocytes derived from the HLA and LLA provides a potential mechanism which enables the biomechanical demands of differing joint regions to be maintained.  相似文献   

19.
OBJECTIVE: To determine the effects of interleukin (IL)-1 and tumor necrosis factor (TNF)-alpha on canine chondrocytes cultured in an agarose-based 3-dimensional (3-D) system. SAMPLE POPULATION: Humeral head articular cartilage chondrocytes obtained from 6 adult dogs. PROCEDURE: Chondrocytes were cultured in a 3-D system for < or = 12 days in serum-free medium with IL 1alpha, IL-1beta, or TNF-alpha at concentrations of 20, 50, or 100 ng/mL. After 1, 3, 6, and 12 days, glycosaminoglycan (GAG) concentrations in 3-D constructs; nitric oxide and prostaglandin E2 (PGE2) concentrations in media samples; and relative expressions of selected genes, including metalloproteinase (MMP)-13 and tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2, were evaluated. Control specimens were comprised of chondrocytes cultured without proinflammatory cytokines. RESULTS: In control 3-D constructs, GAG content was significantly higher than for all other constructs. Compared with control values, relative expressions of MMP-13, TIMP-1, and TIMP-2 genes in the IL-1beta (50 ng/mL) group were significantly higher at day 1; at all evaluations, media concentrations of nitric oxide were significantly higher in all TNF-alpha-treated cultures; and concentrations of PGE2 in media samples were significantly higher in the IL-1beta (50 ng/mL) and IL-1beta (100 ng/mL) groups at days 1 and 3, in the IL-1beta (100 ng/mL) group at day 6, and in all TNF-alpha groups at days 1, 3, and 6. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that TNF-alpha more readily induces production of nitric oxide and PGE2 by canine chondrocytes, compared with IL-1beta. In vitro, IL-1alpha appeared to have a minimal effect on canine chondrocytes.  相似文献   

20.
OBJECTIVE: To elucidate tissue inhibitor of metalloproteinase (TIMP)-mediated effects on chondrocytes. SAMPLE POPULATION: Articular cartilage from humeral heads of 6 dogs. PROCEDURE: Chondrocytes from harvested specimens were cultured in 3-dimensional (3-D) agarose at 10(6) cells/mL. We prepared 3-D constructs exposed to only tumor necrosis factor (TNF)-alpha (50 ng/mL). Recombinant human TIMP-1 (255nM), -2 (285nM), or -3 (250nM) was added to liquid media bathing 3-D constructs cultured with TNF-alpha. Chondrocytes cultured without TIMP or TNF-alpha served as control samples. Samples of liquid media were collected on days 6, 9, 15, and 21 of culture for evaluation of glycosaminoglycan (GAG) and nitric oxide concentrations. The 3-D constructs were collected on days 9, 15, and 21 for evaluation of GAG, hydroxyproline (HP), and DNA contents. RESULTS: GAG content in control samples increased significantly during the study, whereas GAG content in 3-D constructs cultured with TNF-alpha or TNF-alpha plus TIMP did not increase. On day 9, GAG release from 3-D constructs cultured with TNF-alpha was significantly higher than that in other constructs. The HP content in control samples increased during the study and was significantly higher than that in all other constructs on day 21. Concentrations of nitric oxide were significantly lower in control samples on day 6, compared with concentrations for all other constructs. CONCLUSIONS AND CLINICAL RELEVANCE: Addition of TIMPs did not counteract suppression of GAG and HP accumulation in 3-D constructs exposed to TNF-alpha. Apparently, adverse effects on chondrocytes exposed to TNF-alpha cannot be prevented by addition of TIMP alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号