首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 48 毫秒
1.
基于杂交小波变换的农产品图像去噪算法   总被引:1,自引:4,他引:1  
针对现有图像去噪方法去噪效果不明显、易丢失细节特征等缺陷,提出了一种基于杂交小波变换的农产品图像去噪算法。该方法综合了小波去噪能较好保留图像细节特征和Wiener滤波器可得到最优解的优势,分别以经小波变换、Wiener滤波处理后的图像作为杂交小波变换初始种群的父本和母本,并以最大类间方差作为适应度函数来评价个体的优劣,通过杂交和变异操作实现基因重组,提取出小波变换与Wiener滤波在图像去噪中的优势基因;经过有限次的杂交代数最终得到兼有父本和母本优势的子代图像。试验中用红枣和小麦图像对算法进行测试,去噪后红枣和小麦的图像峰值信噪比(PSNR)分别为178.44和183.24,好于邻域平均法(176.76和175.16)、中值滤波法(174.79和173.13)、维纳滤波(172.75和173.48)和高斯滤波(167.50和165.60)等常规去噪方法,并且在视觉效果上同时兼有噪声低和边缘清晰等优点,表明该方法用于农产品图像去噪是有效的、可行的。  相似文献   

2.
应用小波分析方法和偏微分方程方法进行图像处理是一个重要课题。小波变换去除图像噪声时虽然能保持图像的细节信息,但是图像的边缘信息被平滑了。使用偏微分方程对图像去噪,并与使用小波变换去除图像噪声后效果进行比较,实验结果表明:使用偏微分方程对图像去噪在平滑噪声的同时可以使边缘得到保持,应用偏微分方程进行图像去噪是一种有效的工具。  相似文献   

3.
农产品图像的去噪是农产品图像处理中最基本、最重要的工作之一。为了更有效地去除农产品图像中的噪声。受二维离散Wiener滤波器计算方法的启发,提出了一种基于小波变换的Wiener滤波方法。该方法采用小波变换和Wiener滤波相结合的方法,具有稀疏性、多分辨率、去相关性、选基灵活性和在MSE意义上对图像进行最优估计的优点。该方法首先对含噪农产品图像ano做第一次小波变换得到低频图像a1和水平、垂直和对角三方向的高频图像 hd1、vd1及dd1;其次对低频图像a1做Wiener滤波得到a1w,再对3个高频图像分别做Wiener滤波并合成得到g1w ;接着对低频的a1w和高频g1w做小波逆变换,得到滤波图像“a1w+g1w”。同时,考虑到噪声主要在高频部分,所以直接把低频的a1和高频g1w做小波逆变换,得到滤波图像“a1+g1w”。这是对含噪图像ano做第1次小波变换的情况,其第2次、第3次及第4次变换的情况与此类似。这样可以得到许多滤波图像,然后根据图像信噪比PSNR和视觉效果,最终确定去噪效果最好的农产品图像。该方法应用于红枣、小麦杂草等农产品图像的去噪中,结果PSNR为158.23(视觉效果清晰),好于邻域平均法(PSNR 为154.14)、中值滤波法(PSNR 为155.82)、数学形态学(PSNR为154.07,视觉效果偏黑)、高斯滤波法(PSNR为153.79,视觉效果太黑)、直接维纳去噪(PSNR为154.14)和小波去噪(PSNR为158.18)等多种方法。试验结果表明,基于小波变换的Wiener滤波方法应用于农产品图像去噪具有信噪比高、视觉效果好等优点;基于小波变换的Wiener滤波方法用于农产品图像去噪是有效的、可行的。  相似文献   

4.
蝗虫显微切片图像在获取的过程中不可避免地会受到噪声污染,其纹理、边缘与噪声又都属于高频分量,单独使用小波变换或偏微分方程(partial differential equation,PDE)扩散的方法都不能在有效去噪的同时保持边缘、纹理等。针对这一问题,提出了基于自适应小波PDE的去噪算法。首先对蝗虫切片含噪图像进行sym5小波软阈值去噪,分解层数根据去噪后图像的PSNR(peak signal to noise ratio)值自适应地选择,阈值门限使用Birge-Massart处罚算法获取。然后在此去噪的基础上进行Perona-Malik(PM)模型去噪,迭代次数根据去噪后图像的PSNR值自适应地选择,梯度阈值根据图像自身的2范数获取。为了验证所提出算法的去噪性能,进行了与常用去噪算法的对比试验。试验结果表明:视觉上,采用本文算法去噪后的图像噪声点较少且边缘、纹理清晰;客观上,采用该文算法去噪后的图像PSNR值比使用维纳滤波高出2 d B左右,比使用中值滤波高出3 d B左右,比使用小波阈值去噪高出2 d B左右,比使用PM模型去噪高出1 d B左右,并且在结构相似性(structural similarity image measurement,SSIM)上采用该文算法去噪后的图像与原始图像的相似度最高。因此,将自适应小波PDE的算法应用于蝗虫切片去噪是可行的、有效的,为其后续处理提供了技术支持。  相似文献   

5.
基于小波变换的华北平原耕地复种指数提取   总被引:3,自引:2,他引:3  
该文以中国华北平原为研究区域,提出了基于小波变换的耕地复种指数遥感提取方法。首先,利用小波变换对2007年36景SPOT VGT/NDVI(SPOT VEGETATIONVGT数据归一化植被指数)遥感数据进行去噪处理,重建耕地农作物生长NDVI(归一化植被指数)曲线;然后,结合地面样点数据、农时数据和农业统计数据,采用二次差分法提取了华北平原2007年耕地复种指数和空间分布特征。研究结果表明,华北平原5省市耕地复种空间分布存在明显的地域特性,河南省耕地复种指数最大,达到179.4%,山东省次之,北京市最小。该研究结果与统计数据和其他遥感监测比较结果表明,基于小波变换去噪时序遥感数据提取耕地复种指数的技术方法与统计数据和其他遥感监测结果总体上具有较好的一致性,复种指数空间分布变化趋同。  相似文献   

6.
基于小波变换的番茄总糖近红外无损检测   总被引:1,自引:2,他引:1  
分别采用小波消噪、常数偏移消除等11种光谱预处理方法,对番茄总糖含量(质量分数)的近红外光谱进行预处理,通过偏最小二乘法定量校正模型预测值比较得出,小波消噪是适合番茄近红外光谱的最佳预处理方法,小波消噪的总糖质量分数近红外光谱优选区域为11 998.9~6 097.8 cm-1和4 601.3~4 246.5 cm-1,在此光谱区内建立的番茄总糖质量分数偏最小二乘法模型预测值与实测值的相关系数为0.930,内部交叉验证均方差为0.466%,校正标准差为0.469%,预测标准差为0.260%。试验结果表明:小波消噪后建立的近红外光谱模型能准确地对番茄总糖含量进行快速无损检测。  相似文献   

7.
一种基于小波变换的图像过渡区提取及分割方法   总被引:5,自引:3,他引:5  
具有复杂背景的树木图像的分割对于精确对靶施药及智能化植保机械的设计具有重要意义。为实现树木图像的精确分割,针对该类图像的特点,该文提出了一种基于小波变换的过渡区提取树木图像分割方法。通过对比小波变换系数、小波变换系数聚类以及小波包系数,最终选取了同时能够分解出更多高频、低频信息的小波包变换系数提取特征,根据小波包变换系数定义了小波能量比参数,将小波能量比参数值归一化为图像灰度值,采用自适应阈值和神经网络两种方法提取了过渡区,实现了具有复杂背景树木图像的分割。试验表明,该方法分割精度高,对于分割复杂背景的树木图像具有特别意义。  相似文献   

8.
小波变换的模极大值在图像边缘检测中的应用研究   总被引:2,自引:0,他引:2  
边缘检测在图像处理中有着重要的作用。依据canny算子的核心思想,运用小波分析技术,提出了一种基于小波变换的模极大值边缘检测算法。仿真结果表明:该算法能提取图像较弱的边缘,有较好的去噪效果,且边缘有较强的连续性,优于传统的边缘检测算子。  相似文献   

9.
数字高程模型是一种应用十分广泛的地形模型,由于其数据量极其庞大,如何实现其高效压缩一直是国内外计算机研究应用的重要课题。多进制小波是近几年刚发展的小波理论的一个新的分支,对多进制小波技术在DEM数据压缩中的应用进行了了深入研究,给出了DEM数据多进制小波压缩算法、程序及其实验结果。实验结果表明,该方法与二进制小波相比,具有更高的压缩比,优于多次利用二进制小波压缩的精度。  相似文献   

10.
基于小波变换和神经网络的短期风电功率预测方法   总被引:1,自引:3,他引:1  
随着并网风电场规模的不断增大,为保证电力系统运行的稳定性、合理制定调度计划、提高风电场在发电市场的竞争力,需要对短期风电功率进行准确地预测。该文提出一种小波变换和神经网络理论相结合的综合预测方法,将历史风电功率序列和历史风速序列分别进行小波单尺度分解,得到对应的概貌功率、细节功率和概貌风速、细节风速;然后用概貌功率和概貌风速序列训练BP神经网络,预测未来的概貌功率;用细节功率和细节风速序列训练BP神经网络,预测未来的细节功率。在此基础上,将概貌功率和细节功率叠加,得到最终预测结果。对我国某风电场的实际数据  相似文献   

11.
狭叶锦鸡儿叶切片显微图像在获取过程中不可避免的受到噪声污染,会对后续处理造成不良影响。针对现有噪声类型未知,去噪算法存在速度慢、效果不理想等问题,该文提出图像噪声类型估计-强度估计-去噪这一处理过程,实现对狭叶锦鸡儿叶切片显微图像降噪目的。首先采用平滑区直方图重构和拟合法确定噪声类型;然后在此基础上,应用基于图像块的SVD(singular valuable decomposition,SVD)域图像噪声强度估计法对噪声标准差进行估计;最后在确定噪声类型和强度基础上,采用几何均值滤波(geometric mean filtering,GMF)和三维块匹配滤波(block-matching and 3-D filtering,BM3D)对图像进行联合去噪。试验结果表明:该文噪声类型估计法估计出切片图像噪声类型为加性高斯噪声,高斯函数对随机选取的15幅狭叶锦鸡儿叶切片图像平滑区域直方图数据点拟合优度2R均值为0.996,平均均方根误差RMSE(root mean squared error,RMSE)为0.144 6;采用该文噪声强度估计法估计出的切片图像噪声标准差???[2.5,4.0],处理标准差较小噪声,该文算法处理精度、运行速度和稳定性等方面存在明显优势;GMF-BM3D算法在较好去除图像噪声同时,极大的保留了图像纹理、边缘和细节等信息,同时极大的提高了算法运行速度,处理后的图像BRISQUE(blind/referenceless image spatial quality evaluator,BRISQUE)值为10左右,相当于原图BRISQUE值的1/2左右。与传统BM3D算法相比,去噪效果相当,但耗时约相当于传统BM3D算法的1/9。与小波去噪算法(wavelet threshold,WT)算法相比,虽速度相对较慢,但去噪后图像BRISQUE值比使用WT法低4左右。因此,该算法较好实现了对狭叶锦鸡儿叶切片图像准确降噪,为其后续处理提供了可靠技术支持。  相似文献   

12.
农田遥感图像在采集过程中会受到噪声影响,为得到准确的农田遥感图像数据,应对获取的农田遥感图像进行去噪预处理。农田遥感图像中的纹理承载了重要信息,在图像降噪的同时保持或增强图像纹理具有重要意义。由于纹理和噪声一样,在频域表现为高频信号,以分解和重构算法为基础的常见滤波(含小波变换)方法在降噪的同时,也会造成纹理清晰度的下降。该文结合农田遥感图像纹理呈现出来的直线特性,将剪切波(Shearlet)和变分理论相结合,提出了一种新的遥感农田图像保纹理降噪方法。该方法首先对较大的遥感图像分块进行shearlet变换,在降噪的同时识别不同图块图像的纹理含量;对细小纹理含量较少的平滑区域,采用保边降噪变分模型去除shearlet变换带来的人工伪影。为避免子图块边界带来的边界效应,该文基于中心仿射变换理论提出了一种新的图像延拓方法,有效提高了图像降噪的效果。试验结果表明,该文算法去噪后的峰值信噪比(peak signal to noise ratio,PSNR)平均值比全变分模型去噪算法大1 d B,该文算法去噪后的PSNR平均比曲线波去噪算法大2 d B。同基于Symmlet小波的Shearlet算法相比,该文算法处理后农田遥感图像中伪影减少,在高斯噪声标准偏差σ为10、20和30 d B时,峰值信噪比PSNR分别提高了13.99%、9.69%和7.75%。  相似文献   

13.
基于Mallat算法的谷物流量信号小波去噪方法   总被引:1,自引:3,他引:1  
针对联合收获机在复杂噪声背景作业过程中难以获取可靠的谷物流量信息的难题,提出了利用小波变换(wavelet transform,WT)对谷物流量传感器输出信号去噪处理方法。根据流量原始信号和噪声的频谱特性确定小波函数和分解尺度,将采集的流量原始信号通过Mallat算法进行小波分解,滤除高频噪声分量重构流量有效信号,由单片机AD通道对流量有效信号进行标定,标定试验后的传感器在不同谷物流量下累积质量最大相对误差为1.68%。利用北斗定位模块进行差分定位提高定位精度,测产装置信息由8051F单片机存储用以绘制农田作业产量图,将设计的测产系统安装在联合收获机上进行模拟水稻作业试验,试验结果表明:对流量传感器输出信号进行小波分解后,谷物流量测量相对误差最大为6.18%,平均相对误差为5.37%。通过对流量传感器输出原始信息进行小波变换,对比小波去噪前后信号的频谱曲线,验证了基于Mallat算法的流量信号去噪和流量有效信息重构方法的可行性和准确性,该研究可为研究农业机械复杂作业环境下原始信息去噪与有效信息重构提供参考。  相似文献   

14.
梅树立 《农业工程学报》2016,32(17):152-159
保纹理降噪在农业领域图像处理中具有非常重要的作用。现有降噪方法由于无法正确识别纹理和噪声导致降噪效果不理想。针对该问题,该文提出多尺度插值小波框架下的变分法和剪切波变换耦合降噪方法,其中变分法可以识别图像中的主要目标物轮廓,但把纹理识别为噪声;而剪切波变换可识别图像中的纹理细节,但也容易把噪声当作纹理。耦合方法首先对图像进行错切变换,实现图像中纹理区域的降噪,然后通过变分法消除剪切波变换中误将噪声作为纹理重构出现的人工伪影。耦合方法结合了2种方法的优点,使图像降噪效果得到提高。最后以蝗虫切片图像的降噪为例进行数值验证,相对于变分法,峰值信噪比PSNR提高了6.37%;相对于剪切波,PSNR提高了5.90%,数值结果表明了该方法的有效性。  相似文献   

15.
基于TOF深度传感的植物三维点云数据获取与去噪方法   总被引:2,自引:2,他引:2  
为提高植物三维重建的精度,更好地实现植物数字化研究,提出了基于TOF(time of flight)深度传感的植物三维点云数据获取与去噪方法。首先通过TOF深度传感来获取植物点云数据,采用直通滤波器对点云数据进行预处理,减少背景噪声;其次采用改进密度分析的离群点去噪算法,该算法通过结合邻近点平均距离和邻域点数数量2个特征参数,对点云数据中的离群点噪声进行检测和去除;最后采用双边滤波算法对点云内部的小尺寸噪声进行检测和去除。以番茄植株进行相关试验,试验结果表明:与传统双边滤波算法比较,该文算法最大误差降低了11.2%,平均误差降低了23.2%;与拉普拉斯滤波算法比较,最大误差降低了20.6%,平均误差降低了39.2%,表明该文提出的算法在保持点云特征的情况下,能简单高效地去除植物三维点云数据中的不同尺度噪声。  相似文献   

16.
植物的分类与识别是农业生产经营和植物学研究中具有非常重要意义的基础性工作。植物叶片识别是进行植物分类的一种非常有效的方法,过去传统的做法是靠手工测量采集叶片原始数据进行人工分析。随着计算机图像处理技术的飞速发展及其应用领域的不断拓宽,在植物叶片识别过程中可利用计算机进行辅助分析,这样可以大大节省资源、提高效率,并且得到的结果也具有较高的精确度。本文将重点介绍基于图像纹理分析的植物叶片识别系统。  相似文献   

17.
基于数学形态学的植物叶片图像预处理   总被引:1,自引:0,他引:1  
植物叶片图像的预处理是进行叶形特征提取和识别的重要前提,获得高质量的预处理叶片图像对计算机辅助植物识别十分重要。本文提出了基于数学形态学的植物叶片图像的预处理方法,运用数学形态学中的开运算和闭运算消除图像中的孤立噪声点并填补叶片内部孔洞。该方法保持了原图像的基本形状特征并能获得清晰的边缘,为叶片特征提取创造了良好的前提。  相似文献   

18.
针对无明显的直线特征的仓储害虫图像,提出一种基于区域和边缘的霍特林变换旋正倾斜害虫图像的方法。首先通过自动搜索的方法确定储粮害虫的最小外接矩,利用自适应阈值对害虫图像二值化;提取最小外接矩内部害虫图像区域和边缘坐标,计算坐标数组的特征向量并构成霍特林变换矩阵;对原害虫图像区域和边缘经变换矩阵作用后实现对倾斜害虫图像的旋转矫正。试验结果表明,基于区域的霍特林变换能更快速准确地测量出倾斜害虫图像的变换矩阵并进行旋转操作,而且具有更好的抗噪性能和鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号