首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intensive fishing of whitefish (Coregonus lavaretus) and a survival rate of the early stages of the fry that is generally too low lead, at present, to the whitefish stocks not being able to utilize fully the natural food resources now produced many times in excess of the requirements by the eutrophication of lakes.Feeding experiments in aquaria have, for several years, shown very impressively, that there are two main reasons for the high mortality of the larvae in the natural environment: high sensitivity to even a short-term lack of food and specific food requirements — the necessity for the larvae to feed on the juvenile stages of certain zooplanktonic crustaceans.Artificial breeding of whitefish eggs in cold water at 1°C caused a delay in hatching of about 8 weeks compared with natural hatching, thus allowing the release of the larvae at a time when the density of zooplankton is about ten times higher and mainly juvenile stages of crustaceans needed by the whitefish larvae are present. Hence, this is one proven way of improving the survival rate of whitefish larvae in the natural environment.Young fish, after metamorphosis, have less specialized food requirements than the larval stage and can even be fed adequately with dry food. In rearing the larvae, natural zooplankton can be replaced by the nauplii of the brine shrimp, Artemia salina. Larvae have not yet been reared on dry food or even on slowly frozen zooplankton or Artemia, but Artemia nauplii shock-frozen in liquid nitrogen (at ?196°C) were found to be as acceptable as living ones and allowed metamorphosis of the larvae to take place. The substance, assumed to be present in the living Artemia, which was lost on slow-freezing but retained after shock-freezing and was shown to be essential to the whitefish larvae, was insoluble in water. Biochemical investigation and identification of this substance are urgently required in order to synthesize an artificial complete food for whitefish larvae.As long as this artificial food is not available, attention will have to be focussed on rearing the larvae in natural ponds where the specific and essential zooplankton can be encouraged.  相似文献   

2.
Larvae of the portunid crab Scylla serrata were successfully reared using a combination of antibiotics (penicillin-G + polymyxin-B), phytoplankton (Chlorella sp.) and appropriate food (Artemia salina nauplii).Antibiotics enhanced premetamorphic survival of zoeae while leaving rate of zoeal development and success of metamorphosis to megalopa unaltered. Water filtration and ultraviolet sterilization had no significant effect on rates of zoeal survival or development. Although antibiotics did not affect metamorphosis of megalopa to the crab stage, the antibiotic mixture may have been detrimental to survival of megalopae.The presence of Chlorella, unlike antibiotics, left zoeal survival unaffected while stimulating production of megalopae. As with antibiotics, time from hatching to megalopa formation was unaltered by the presence of Chlorella.Survival and development of zoeae varied with type and concentration of food organisms used. Feeding with Artemia nauplii produced highest larval survival and continued development. Rotifers and zooplankton as a food source failed to support zoeal survival to the onset of metamorphosis and failed to enhance survival when fed in combination with Artemia nauplii.A daily optimum food concentration of ten Artemia nauplii per ml was established for zoeal survival, while success of metamorphosis of zoeae to megalopa increased as food concentration increased from 5 to 16 nauplii per ml. Rate of development was comparable in all zoeal feeding experiments.Megalopae survived better at the higher food (Artemia) concentrations used and tended to develop more rapidly to the crab stage at higher food levels.  相似文献   

3.
It is not known whether rotifers or Artemia nauplii are the best first food for South African mud crab Scylla serrata larvae. In order to test this, larvae were fed with five different test diets. These were rotifers for the first 8 days and newly hatched EG® type Artemia nauplii (San Francisco Bay) from day 6 onwards (treatment R6A); newly hatched EG® type Artemia nauplii throughout the rearing period (treatment EG); newly hatched Vinh-Chau strain (Vietnam) Artemia nauplii throughout the rearing period (treatment VC); decapsulated cysts of EG® type Artemia throughout the rearing period (treatment DECAP); or decapsulated cysts supplemented with low densities of Artemia EG type Artemia nauplii (treatment MIX). Two experiments were conducted approximately 1 month apart using larvae from two different female crabs. Although results showed it is possible to rear S. serrata larvae through metamorphosis on Artemia nauplii exclusively, larval performance (development, survival and successful metamorphosis) was enhanced by the inclusion of rotifers as a first feed.No significant difference in performance was recorded between larvae fed on the two strains of Artemia nauplii. Larvae fed on decapsulated cysts in treatments DECAP and MIX performed poorly, but there were indications that decapsulated cysts and other inert diets may have potential as supplements to live food in the rearing of S. serrata larvae.  相似文献   

4.
Tasmanian species of flounder were cultured successfully following stripping and fertilizing eggs after hormone-induced ovulation. The larvae were fed rotifers followed by Artemia nauplii. Survival rates of larvae from first-feeding to metamorphosis, which were as high as 94–98% for R. tapirina and 65% for A. rostratus, indicate that both species can be readily cultured in captivity.  相似文献   

5.
This study proposed the use of the stable isotope technique to track the type of food utilized by pacu Piaractus mesopotamicus larvae during their development, and to identify the moment when the larvae start using nutrients from the dry diet by retaining its carbon and nitrogen atoms in their body tissues. Five‐day‐old pacu larvae at the onset of exogenous feeding were fed Artemia nauplii or formulated diet exclusively; nauplii+formulated diet during the entire period; or were weaned from nauplii to a dry diet after 3, 6 or 12 days after the first feeding. δ13C and δ15N values for Artemia nauplii were ?15.1‰ and 4.7‰, respectively, and ?25.0‰ and 7.4‰ for the dry diet. The initial isotopic composition of the larval tissue was ?20.2‰ and 9.5‰ for δ13C and δ15N respectively. Later, at the end of a 42‐day feeding period, larvae fed Artemia nauplii alone reached values of ?12.7‰ and 7.0‰ for δ13C and δ15N respectively. Larvae that received the formulated diet alone showed values of ?22.7‰ for δ13C and 9.6‰ for δ15N. The stable isotope technique was precise, and the time at which the larvae utilized Artemia nauplii, and later dry diet as a food source could be clearly defined.  相似文献   

6.
Daily food intakes, optimal feeding regimes and food concentrations for laboratory reared Paralithodes camtschaticus (Tilesius, 1815) larvae were investigated. Artemia nauplii hatched at standard conditions were used as food. Daily food intakes of zoeae I–IV at 7–8 °C comprised 11.3, 22.4, 33.2, and 41.8 nauplii individuals (ind)?1 day?1, respectively, taking into account that wet weight of Artemia nauplii used for the experiments constituted 0.026 mg, dry weight 0.0042 mg. Optimal initial Artemia nauplii concentrations for feeding zoeae I–IV was determined as 400–600, 600–800, 800–1000 and 1000–1200 nauplii L?1 respectively. Recommendations on using Artemia nauplii as food for red king crab larvae were outlined on the basis of experimental results. Growth, development and survival rates of zoeae I–IV reared in recycling water system at 7–8 °C and fed Artemia nauplii according to these recommendations were described.  相似文献   

7.
This study aimed to establish feeding strategies covering the whole larval period of the forktail blenny, Meiacanthus atrodorsalis, based on the standard hatchery feeds of rotifers and Artemia. Three purposely designed experiments were conducted to determine the appropriate times and techniques to transition larvae from rotifers onto Artemia nauplii of a Great Salt Lake (GSL) strain, and a specialty AF strain, as well as subsequent transition onto enriched metanauplii of GSL Artemia. With a 3‐day co‐feeding period, larvae adapted well to a transition from rotifers to newly hatched GSL Artemia nauplii as early as 5 days posthatching (DPH), and as early as 3 DPH when fed the smaller AF Artemia nauplii. However, prolonging the rotifer‐feeding period up to 11 DPH did not negatively affect survival. Larvae fed Artemia nauplii of the AF strain showed 17–21% higher survival, 24–33% greater standard length and body depth, and 91–200% greater dry weight, after 20 days relative to those fed nauplii of the GSL strain. Meanwhile, enriched Artemia metanauplii of the GSL strain were shown to be an acceptable alternative to AF Artemia nauplii for later larvae, producing similar survival and growth when introduced from 8 DPH. Based on our findings, we recommend feeding M. atrodorsalis larvae rotifers as a first food between 0 and 2 DPH, introducing AF Artemia nauplii from 3 DPH, followed by enriched GSL Artemia metanauplii from 8 DPH onward, with a 3‐day co‐feeding period between each prey change.  相似文献   

8.
Larvae of Siganus lineatus were hatched and reared through metamorphosis in a 7 000-1 tank covered with a translucent roof. The larvae were fed phytoplankton (mixed cultures), rotifers (Brachionus plicatilis), copepods (Oithona sp.), and Artemia nauplii. Thirty-five days were required for all the larvae to metamorphose; survival was 800 out of 5 000 (16%). The rearing period and rearing criteria are identical to those required for S. canaliculatus. Three important developmental stages were identified: the dark-head carnivorous stage (the gut is a simple coil), the brown-head omnivorous stage (the gut is elongated and convoluted), and the juvenile herbivorous stage (the gut is highly elongated and convoluted into a complex coil). Over-feeding on Artemia nauplii may result in deaths among brown-head and juvenile fishes; adjustment of the feeding regime when larvae begin to develop into the brown-head stage is considered important. Copepods are an excellent substitute for Artemia nauplii during this period  相似文献   

9.
In three separate experiments, harpaticoid copepods Tisbe monozota (alive and dead) and a microparticulate microbound diet were evaluated as alternatives to live Artemia nauplii as food, beginning at either stage PZ2 or M1, in the larval culture of Litopenaeus vannamei. Larvae were cultured in 2 L round bottom flasks at a density of 150 L− 1 (Experiment 1) and 100 L− 1 ( 3.2 and 3.3) at 28 °C, 35‰ salinity and 12:12 LD photoperiod, and fed 4×/day- 1. Larvae were initially fed a mixture of phytoplankton to stages PZ2 or M1 and then fed either live Artemia, live or dead copepods, or a microparticulate microbound diet. The experiments were terminated and all larvae were harvested when more than 80% of larvae had molted to postlarvae 1 (PL1) within any flask representing any of the treatments. The comparative value of the different diets and feeding regimes was determined by mean survival, mean dry weight and total length of individual larva, and percentage of surviving larvae that were PL1. Trypsin activity of samples of larvae from each treatment was also determined. The microparticulate microbound diet effectively served as a complete substitute for Artemia nauplii when fed beginning at stage M1. When fed at the beginning of the PZ2 stage, survival was comparable to that of larvae fed Artemia, but mean dry weight, mean total length, and percent of surviving larvae that were PL1 generally were significantly less. Responses to the feeding of copepods, whether fed dead or live, as a substitute were generally significantly less than those of larvae fed either the Artemia nauplii or the microparticulate diet. Values of trypsin activity (10− 5 IU/μg- 1 dry weight) corresponded to the relative proportions of the different larval stages within a treatment, with higher activity being characteristic of early stages. Previously demonstrated successful results with another species of crustacean suggest that the microparticulate microbound diet has characteristics that should be effective in the culture of the carnivorous stages of other crustacean and fish larvae that are currently fed live Artemia nauplii.  相似文献   

10.
Two experiments were conducted into the rearing of crucian carp larvae under controlled conditions in an experimental closed water system. In both cases, the rearing lasted 21 days. The first experiment concerned the initial stocking density (from 50 to 600 individuals per l), whilst the second one studied the first food offered (two types of Artemia nauplii, decapsulated Artemia cysts and three types of commercial feeds) which were applied at the moment of exogenous feeding commencement. The best results were obtained using 50 larvae per l, whilst there were no significant differences within the range 200–600 larvae per l. The application of dry feed had a negative influence on the survival and other parameters. The highest survival rate was found in the groups fed with freshly hatched Artemia naupli. The results obtained indicate that the rearing of crucian carp larvae may be successfully conducted in very high stocking densities. However, the very high sensitivity of crucian carp larvae to the type of food offered during the initial days of life should be taken into account. The data presented in this article could be very useful in crucian carp larviculture.  相似文献   

11.
Two feeding experiments were conducted to determine if Brachionus plicatilis and Artemia salina nauplii were ingested by mud crab Scylla serrata larvae. In the first experiment, larvae were fed with increasing densities of Artemia nauplii with or without Brachionus to determine consumption with increasing densities of Artemia and with increasing zoeal stage. This experiment also aimed to determine if the presence of Brachionus as an alternative prey influenced the intake of Artemia by the crab larvae. There was generally an increase in intake with increasing densities of Artemia and increased consumption of Artemia as the larvae grew. Consumption of Brachionus was consistently high in all zoeal stages. There was a significant reduction in the intake of Brachionus with increasing consumption of Artemia in the early zoeal stages (Z1, Z2, Z3), but at later stages (Z4, Z5) the intake of Artemia was no longer affected by the presence of Brachionus. In the second experiment, daily ingestion within instar of zoeal stages and megalopa were compared. There was an increased consumption of Artemia nauplii on the day before molting and increased ingestion of Brachionus on the day after larvae had molted, except at Z3. Megalopae exhibited a decline in Artemia nauplii intake on the days before metamorphosis to crablet.  相似文献   

12.
Carp (Cyprinus carpio) larvae were fed on measured numbers of Artemia nauplii, and daily growth of the larvae monitored for a period of 10 days in order to determine the effect of varying feeding levels. A 34% reduction in specific growth rate was observed over the experimental period. At a temperature of 24 ± 0.5° C, carp larvae were found to require 200–250% of their body weight of Artemia nauplii per day for optimal growth and food conversion during the first five days of feeding, reducing to 100–120%/day over the following five days. The significance of these results is discussed in relation to potential economies of Artemia cyst use in hatcheries.  相似文献   

13.
The Monaco shrimp Lysmata seticaudata (Risso, 1816) is a marine ornamental species whose ecology and biology, as well as its larval culture has previously been addressed. The objective of the study was to predict and improve productivity of this species rearing protocol through modelling. The models developed intend to help aquaculturists to maximize survival to postlarva, decrease larval duration and increase synchronism of metamorphosis and newly metamorphosed postlarvae size by manipulating temperature, diet, first feeding period and stocking density.The models developed allow us to conclude that the L. seticaudata rearing protocol productivity can be improved by raising larvae at a density of 40 larvae L− 1 and fed newly hatched Artemia nauplii since hatching to zoea V, and with Algamac 2000™ enriched Artemia metanauplii from zoea V to metamorphosis to postlarvae.By providing more productive protocols to aquaculturists, destructive practices and wild collection may be reduced.  相似文献   

14.
Turbot larvae reared on rotifers (Brachionus plicatilis) and Artemia (San Francisco brand) nauplii (A) were compared with those fed on different copepod (Eurytemora affinis) stages (B). In one trial, growth and survival of larvae from hatching to day 21, their fatty acid pattern and that of their food organisms were examined. At the age of 21 days larvae of group A measured 11·1 ± 1·6 mm total length (TL) compared with 14·8 ± 1·1 mm TL for group B. From day 3 to 8 survival was 29% (A) and 38% (B). Long-chain polyunsaturated fatty acid composition of turbots resembled that of their corresponding diets. Artemia and Artemia fed larvae were lacking 22 : 6 n-3 fatty acid.In a further study, survival of larvae from day 11 to 21 fed on Artemia nauplii (C) or copepods (D) was found to be greater with the latter diet (73 versus 93%) whereas growth during this experiment was similar in both groups. Before the start of this trial they had been reared on a mixture of copepod nauplii and Brachionus. No influence on weaning success was observed. 22 : 6 n-3 fatty acid is seen to be essential for turbot larvae: elongations of fatty acids by the larvae were not found.  相似文献   

15.
Previous studies have indicated that natural zooplankton, the natural prey organisms of marine fish larvae, is superior to enriched Artemia spp. nauplii in supporting survival, growth and normal development of pigmentation and eye migration in Atlantic halibut larvae. The present study was designed to compare the amino acid dynamics in copepods harvested from a natural lagoon with that of enriched Artemia franciscana nauplii. The natural zooplankton in the present study was dominated by Temora longicornis, but varied in its developmental stage composition, apparent nutritional quality, amount and availability. The protein content in natural zooplankton varied from 31% to 54% of dry mass (DM) compared to 31% in enriched Artemia nauplii. The amount of free amino acids (FAA) in relation to protein was 14% in enriched Artemia nauplii and varied between 16% and 27% in zooplankton in two consecutive seasons. The FAA composition of zooplankton in 1996 was unaffected by stage and season, and showed a species-specific pattern. In response to starvation, two patterns in the amino acid dynamics of copepods were found. The first, exhibited by the major nonessential amino acids (NEAA), showed a continuous reduction in individual amount, while the second pattern, exhibited by the minor nonessential amino acids and all the essential FAA, had an initial increase followed by a reduction. It is suggested that the protein amount in DHA Selco™ (INVE)-enriched Artemia nauplii is too low in order to maximise the growth potential of some marine fish larvae as cod and halibut.  相似文献   

16.
Amphiprion clarkii, a popular marine ornamental fish, despite having an already established reproduction technology, still presents divergences regarding the feeding protocol used for its larviculture in what concerns the ideal day of transition from rotifers to Artemia. This study aimed to determine the optimum time to start supplying Artemia to larvae. Survival, growth, weight gain and metamorphosis of treatments: (T2) start of Artemia supply at the 2nd day after hatching (DAH); (T4) start at the 4th DAH; and (T6) start at the 6th DAH were evaluated. Survival rates ranged from 60 to 66 %. Fish in T2 had a number of metamorphosed fish statistically higher than T6 and began to metamorphose 1 day sooner than other treatments. The positive results obtained for T2 can be related to the premature ability of this species to capture large live food, which can provide many benefits to the larvae. It is concluded that it is possible to offer Artemia nauplii to yellowtail clownfish at 2 DAH.  相似文献   

17.
Females of Siganus guttatus reared to sexual maturity in canvas tanks were induced to spawn by using human chorionic gonadotropin (HCG, Ayerst) at 500 IU/fish or about 2 IU/g body weight. The amount of HCG used depended on the initial mean egg diameter; the smaller the diameter, the more HCG was used. Fish with oocytes characterized by germinal vesicle migration (mean egg diameter ≥ 0.47 mm) spawned without HCG injection. Fertilization and hatching rates for both treated and untreated fish were more than 90%. The larvae were reared to metamorphosis using rotifers from day 2–17, rotifers + newly hatched Artemia nauplii from day 18–20 and rotifers + newly hatched Artemia nauplii + artificial feed from day 21–35. In addition, Isochrysis galbana was introduced to the rearing tanks from day 1–10 and Chlorella sp. and/or Tetraselmis sp. from day 1–35. Survival rates of larvae tended to be lower as the broodstock became older.  相似文献   

18.
Live food supply is a key factor contributing to the success of larval fish rearing. However, live food densities vary greatly between fish species and management protocols across fish hatcheries. The growth, survival, food selection and consumption of yellowtail kingfish larvae were examined at different regimes of live food supply in an attempt to identify a suitable live food feeding protocol for larval rearing in marine fish. This study was divided into two feeding phases: rotifer phase from 3 to 14 DPH (phase I) and Artemia nauplii phase from 15 to 22 DPH (phase II). In phase I, four rotifer densities (1, 10, 20 and 40 mL−1) were used. In phase II, Artemia started at 0.8 nauplii mL−1 on 15 DPH, and then the density of Artemia was daily incremented by 50%, 70%, 90% and 110%, respectively, in four treatments from 15 to 22 DPH. In phase I, rotifer density significantly affected larval growth, but not survival. By 7 DPH, the number of rotifers consumed by fish larvae reached 170–260 individuals, but did not significantly differ between rotifer densities. During cofeeding, fish larvae selected against Artemia nauplii by 10 DPH, but by 14 DPH Artemia nauplii became the preferred prey item by fish larvae exposed to the 10, 20 and 40 rotifers mL−1. In phase II, both fish growth and survival were affected by Artemia densities. Fish daily consumption on Artemia by 20 DPH reached 500–600 individuals but did not significantly differ between prey densities. The result suggests that rotifer densities be offered at 20–40 mL−1 before 6 DPH and 10–20 mL−1 afterwards to support larval fish growth and survival. Likewise, Artemia is recommended at a daily increment of 90–110% of 0.8 mL−1 from 15 to 22 DPH. This study proposes a management protocol to use appropriate type and quantity of live food to feed yellowtail kingfish larvae, which could be applicable to larval culture of other similar marine fish species.  相似文献   

19.
The influence of the absence of Artemia nauplii from larval diet protocols on growth and digestive system ontogeny was studied using histological techniques in the shi drum (Umbrina cirrosa). One group of larvae was reared using the standard intensive rearing protocol, which offers a combination of enriched rotifers (Brachionus plicatilis), Artemia spp. nauplii and artificial diet (Std-group). Another group was reared using the same protocol, but without the offering of Artemia nauplii (group No-Artemia). The ontogenesis of the digestive system from hatching to metamorphosis was a very rapid process, and there were no differences between the two feeding regimes in the temporal appearance of the various components of the digestive system. The first organised presence of the hepatic and pancreatic tissue appeared at 2–3 d after hatching (dah), suggesting that these organs function from a very early developmental stage. In the No-Artemia larvae between 13 and 29 dah there was a reduction in the height of enterocytes in the intestinal mucosa, a progressive flattening of the primary intestinal folds in the anterior and posterior intestine and a decrease in lipid stores in the liver, suggesting a period of relative starvation. However, by the end of the study at 41 dah, there were no significant differences in body length, intestinal morphology or liver lipid stores between larvae reared under the two feeding regimes. The study suggests that the diet may influence the maturation and/or function, but not the ontogeny of the digestive system. Furthermore, the rapid differentiation of the digestive system in shi drum and the prompt recovery of the No-Artemia larvae from the symptoms of starvation by 29 dah, indicate a plasticity during ontogenesis and the ability of larvae to adapt to artificial diets at very early developmental stages.  相似文献   

20.
In order to determine an optimal enrichment protocol with krill phospholipid liposomes, three different experiments were carried out to evaluate the effects of nauplial density, the concentration of liposome, and the number of doses delivered to the nauplii on the survival and the essential fatty acid (EFA) bioencapsulation in Artemia nauplii. No survival differences were found between the different liposome treatments and the control nauplii enriched with a commercial emulsion. This result confirms that previously described mortalities during Artemia enrichment with liposomes can be minimized and controlled. On the other hand, the EFA incorporation obtained from the three experiments indicates that maximal bioencapsulation is achieved when incubations are carried out under nauplial densities of 300 nauplii ml− 1, where liposomes are dispensed in a single dose at the beginning of the incubation yielding a concentration of 0.5 g l− 1. These findings complete those obtained in two preliminary studies, and propose a well defined enrichment protocol with krill liposomes as an alternative complementary method to improve the nutritional value of the Artemia nauplii used as food for marine fish larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号