首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
随着除草剂的大面积持续使用,近年来抗性杂草种类增多,危害面积不断增加,危害程度逐渐加重。杂草对除草剂抗性问题业已成为威胁全球粮食安全的关键问题之一。杂草对除草剂的抗药机制主要分为靶标抗性和非靶标抗性,非靶标抗性主要包括对除草剂解毒能力增强、屏蔽作用或与作用位点的隔离作用等机理。本文主要对除草剂的非靶标抗性机制中的P450s、GSTs、ABC转运蛋白和谷胱甘肽转运体等进行综述,并对非靶标抗性机制研究前景进行展望。  相似文献   

2.
以氟啶胺为代表的解偶联剂具有低毒、广谱和高效的特点,对病原真菌、卵菌和细菌均表现出良好的抑菌活性。然而随着杀菌剂频繁而大量的使用,有害生物发展出越来越严重的抗药性。开展病原菌对杀菌剂的抗性机制研究,能够有效预防或治理病原菌抗药性。病原菌对杀菌剂的抗性机制解析方法通常以杀菌剂的靶标蛋白为线索展开,但由于氟啶胺这类杀菌剂在病原菌体内可能不是通过与靶标蛋白结合而产生的抑菌作用,使得通过寻找抗性突变体中发生变化的氨基酸位点,进而进行抗性机制解析的方法难以奏效。本综述以氟啶胺和我国自主创制的杀菌剂双苯菌胺为研究对象,对其作用机制及病原菌对其抗性机制的研究进展进行归纳总结,旨在为这类杀菌剂的田间科学使用提供参考,同时可为病原菌多药抗性机制的解析提供借鉴,丰富杀菌剂抗性研究体系,并能够在实践中为病原菌的抗性治理提供依据。  相似文献   

3.
除草剂的应用为农业生产带来便利, 但长期、单一使用某一种或相同机制的除草剂也引发了杂草对除草剂的抗性问题。抗性杂草种类逐渐增加, 抗性形成机制复杂, 导致农田杂草的治理难度增加。杂草对除草剂的抗性机制主要分为两种, 一种是除草剂靶标位点基因的突变或过量表达导致的靶标抗性, 另一种是杂草对除草剂吸收、转运、固存和代谢等一个或多个生理过程发生变化导致的非靶标抗性。本文综述了杂草对9类不同作用方式除草剂的非靶标抗性机制的生理、生化和分子基础的研究进展, 以期为抗性杂草综合治理提供参考。  相似文献   

4.
20%百草枯水剂防除免耕油菜田杂草的效果研究   总被引:1,自引:0,他引:1  
百草枯是一种快速灭生性除草剂,具有触杀作用,兼有一定内吸作用,它能迅速的被绿色植物组织吸收到体内,并因产生过氧化氢而起到毒杀作用。百草枯尤其对于1年生的单、双子叶杂草效果较好。为了进一步验证百草枯的作用效果,作者于2003年利用由北京燕化永乐农药有限公司提供的20%百草枯水剂进行了免耕油菜田杂草的防除研究,结果如下。  相似文献   

5.
为明确唑嘧磺草胺、丙炔氟草胺与乙草胺混用的联合作用特性及其对大豆田杂草的防除效果,采用温室盆栽法和田间药效试验,分别评价了混配组方的联合作用类型及对大豆田杂草的防除效果.温室盆栽试验结果表明:唑嘧磺草胺、丙炔氟草胺与乙草胺混用对稗草、马唐和苘麻的联合作用类型为相加作用,对反枝苋为相加或增效作用;当唑嘧磺草胺、丙炔氟草胺...  相似文献   

6.
6种除草剂对豚草的田间防治效果   总被引:1,自引:0,他引:1  
化学防治是一种对恶性入侵杂草豚草有效的防治措施,可在IPM中作为应急手段.为筛选出对豚草具高效的除草剂品种,采用茎叶喷雾法,在田间测定了草甘膦、百草枯、氟磺胺草醚、乳氟禾草灵、氯氟吡氧乙酸、双氟磺草胺·唑嘧磺草胺6种除草刘对豚草的防治效果.结果表明,无论是苗期(株高30 cm)还是成株期(株高60 cm),除双氟磺草胺·唑嘧磺草胺,参试除草剂均对豚草表现出良好的防治效果.可见,草甘膦、百草枯、氟磺胺草醚、乳氟禾草灵、氯氟吡氧乙酸均可应用于防治野外发生的豚草.  相似文献   

7.
通过研究噁唑酰草胺及其混用处理对直播稻田杂草的防治效果,探索直播稻田一次性化学除草技术.试验结果表明,每667 m2施用10%噁唑酰草胺EC 100 mL+48%灭草松AS 200 mL防治杂草的效果,对作物的安全性及控害增产作用最佳,能有效控制稻田全生育期禾本科、莎草科和阔叶杂草的危害.  相似文献   

8.
为明确丙炔氟草胺与二甲戊灵复配的联合除草作用及其对棉花的安全性,采用室内生物测定方法,研究了复配制剂的联合除草类型,测定了其对不同品种棉花的安全性及其在棉花与杂草之间的选择性指数,并对复配制剂进行田间药效试验。温室试验结果显示:丙炔氟草胺与二甲戊灵按不同质量比复配后,对供试杂草马齿苋、反枝苋和马唐均呈现加成或增效作用。其中丙炔氟草胺与二甲戊灵按质量比1 : 10复配后的除草活性高于二甲戊灵单剂,其在供试棉花品种与供试杂草的选择性指数在25.81~39.39之间,与两种单剂相比,在一定程度上提高了对棉花的安全性。田间药效试验结果显示:丙炔氟草胺与二甲戊灵复配后综合了两种单剂的优势,对铁苋菜、反枝苋、马齿苋、藜和牛筋草均有很好的防除效果且对棉花安全。  相似文献   

9.
稗Echinochloa crus-galli是中国水稻产区发生严重的恶性杂草之一,严重威胁水稻的产量和品质。为明确江苏省稻田稗JS12种群对噁唑酰草胺的抗性水平及抗性机理,本研究采用整株水平测定法测定了稗种群对噁唑酰草胺的敏感性;通过乙酰辅酶A羧化酶(acetyl-CoA carboxylase,ACCase)靶标基因测序和表达量测定,以及代谢酶抑制剂增效试验,阐明其产生抗性的靶标抗性机制和非靶标抗性机制;最后测定了稗JS12种群对ACCase抑制剂和其他不同作用机理除草剂的敏感性,以明确抗性种群的交互抗性和多抗性情况。结果表明:江苏省稻区稗JS12种群对噁唑酰草胺产生了13.71倍的高水平抗性;稗JS12种群ACCase基因的6个拷贝序列中均未发生氨基酸突变,药剂处理后其ACCase基因表达量显著低于敏感种群;细胞色素P450抑制剂马拉硫磷和谷胱甘肽-S-转移酶(glutathione-S-transferase,GST)抑制剂NBD-Cl均可显著提高JS12种群对噁唑酰草胺的敏感性,其鲜重抑制中量GR50由227.90 g/hm2分别降至77.51和137....  相似文献   

10.
利用丛枝菌根真菌提高植物抗病性研究进展   总被引:2,自引:0,他引:2  
本文就近年来国内外有关丛枝菌根真菌对植物土传病害的防效及其抗性机制进行了阐述,同时展望了丛枝菌根真菌资源在设施蔬菜生产中的广阔应用前景。  相似文献   

11.
Reduced paraquat transport from the site of application to the site of action in the chloroplast seems a likely mechanism for paraquat resistance in several weed species including Arctotheca calendula. Recently, it has been shown that paraquat translocation in A. calendula is correlated with paraquat-induced injury and is reduced in paraquat-resistant A. calendula. Studies with leaf slices have shown that some polyamines when applied concomitantly with paraquat can reduce the toxic effects of paraquat. This study examined the effects of three polyamines, putrescine, cadaverine, and spermidine, on paraquat translocation to examine the possibility that paraquat translocation in susceptible plants would be reduced in the presence of polyamines due to competition of the polyamines with cellular paraquat uptake. Two polyamines, spermidine and cadaverine were effective in reducing paraquat translocation in susceptible A. calendula inducing these plants to perform more like resistant A. calendula in terms of translocation. Quantification of the polyamine contents of resistant and susceptible A. calendula showed that resistant plants have higher constitutive spermidine levels than susceptible plants, which infers a possible role of either polyamines or a polyamine transporter in paraquat resistance.  相似文献   

12.
Mazus pumilus is an annual self‐pollinating weed that is commonly found in arable land, vegetable gardens and roadsides. This weed harbours insects and pathogens that attack vegetables. The mechanism of resistance to paraquat of M. pumilus found in Ohita, Japan, was studied. Whole plant bioassays revealed that the resistant (R) biotypes were four to six times less susceptible than controls. Chlorophyll destruction of leaf discs by paraquat treatment in R biotypes was 4–20 times lower than those of susceptible (S) biotypes. Ferric reducing antioxidant power (FRAP) values in R biotypes were higher than those of S biotypes before and after paraquat treatments. The activity of superoxide dismutase (SOD) was also higher in R biotypes than those of S biotypes before and after treatment with paraquat, but the activities of ascorbate peroxidase (APX) and catalase (CAT) were not different between R and S biotypes. Change of ascorbate (AsA) contents before and after paraquat treatment was equivalent in both biotypes. These results indicate that the increased SOD activity and antioxidant capacity in R biotypes contribute to the resistance to paraquat of M. pumilus.  相似文献   

13.
ALIZADEH  PRESTON  POWLES 《Weed Research》1998,38(2):139-142
There has been a significant increase in the area seeded to minimum- and zero-tilled crops worldwide over the past two decades. These cropping systems rely primarily on the non-selective herbicides glyphosate or paraquat/diquat to control weeds before seeding the crop. Both glyphosate and paraquat/diquat are regarded as low-risk herbicides in the ability of target weeds to develop resistance to them. Following 10–15 years of once annual applications of paraquat and diquat for weed control in zero-tilled cereals, failure of these herbicides to control Hordeum glaucum Steud. in two separate fields occurred. Dose–response experiments demonstrated high-level resistance to paraquat and diquat in both populations; however, the resistant biotypes are susceptible to other herbicides. This is the first report, worldwide, of paraquat resistance following the use of this herbicide in zero-tillage cropping systems and is therefore a harbinger of future problems in minimum-tillage systems when there is exclusive reliance on a contact herbicide for weed control.  相似文献   

14.
The most important results in the field of atrazine and paraquat resistance research by Hungarian researchers are reviewed. Pleiotropic effects accompanying atrazine resistance were investigated in atrazine-resistant (AR) and susceptible (S) biotypes of horseweed (Conyza canadensis (L) Cronq). No significant difference in carbon dioxide assimilation rate was found between the AR and S plants. The rates of the Hill reaction of the AR and S chloroplasts exhibited different temperature dependence. The thylakoid membrane lipids contained a lower amount of polar lipid and the fatty acid content exhibited a higher degree of unsaturation in the AR biotype. Photosynthetic apparatus of the AR biotype had better adaptive ability at low temperature and showed enhanced susceptibility to high-temperature stress. AR horseweed plants had reduced activity of xanthophyll cycle, limited capacity of light-induced non-photochemical and photochemical quenching, higher photosensitivity and susceptibility to photo-inhibition. In the case of paraquat resistance, horseweed found in Hungary exhibited a resistance factor of 450; the resistance is not based on an elevated level and activity of the antioxidant enzyme system. The suggested role of polyamines in the resistance mechanisms can be excluded. The higher putrescine and total polyamine content of paraquat-treated R leaves can be regarded as a general stress response rather than as a symptom of paraquat resistance. A paraquat-inducible, nuclear-coded protein, which presumably functions by carrying paraquat to the vacuole, is supposed to play a role in resistance.  相似文献   

15.
Resistance to paraquat has been studied in detail in many weed species for more than a decade, with the precise mechanism of resistance still unclear. Several studies have indicated that reduced movement of the herbicide to the site of action in the chloroplast is at least partly responsible for endowing resistance. Although paraquat translocation studies have been performed in the past it has been rare for these studies to have been conducted on whole plants in the light, despite early observations which clearly showed that paraquat translocation is minimal unless treated plants are exposed to light. This study has addressed this issue in Arctotheca calendula by tracing the movement of 14C-paraquat in resistant and susceptible plants in both the dark and light. Differences in paraquat translocation between the resistant and susceptible biotypes of A. calendula were only observed when treated plants were exposed to light. It was observed that paraquat translocation was significantly reduced in the resistant compared to the susceptible biotype when plants were exposed to light but not in the dark. It is postulated that paraquat translocation is dependent on light mediated damage. As paraquat-induced damage is less severe in paraquat resistant plants, overall paraquat translocation is reduced in the resistant biotype.  相似文献   

16.
Glyphosate is a key component of weed control strategies in Australia and worldwide. Despite widespread and frequent use, evolved resistance to glyphosate is rare. A herbicide resistance model, parameterized for Lolium rigidum has been used to perform a number of simulations to compare predicted rates of evolution of glyphosate resistance under past, present and projected future use strategies. In a 30‐year wheat, lupin, wheat, oilseed rape crop rotation with minimum tillage (100% shallow depth soil disturbance at sowing) and annual use of glyphosate pre‐sowing, L. rigidum control was sustainable with no predicted glyphosate resistance. When the crop establishment system was changed to annual no‐tillage (15% soil disturbance at sowing), glyphosate resistance was predicted in 90% of populations, with resistance becoming apparent after between 10 and 18 years when sowing was delayed. Resistance was predicted in 20% of populations after 25–30 years with early sowing. Risks of glyphosate resistance could be reduced by rotating between no‐tillage and minimum‐tillage establishment systems, or by rotating between glyphosate and paraquat for pre‐sowing weed control. The double knockdown strategy (sequential full rate applications of glyphosate and paraquat) reduced risks of glyphosate and paraquat resistance to <2%. Introduction of glyphosate‐resistant oilseed rape significantly increased predicted risks of glyphosate resistance in no‐tillage systems even when the double knockdown was practised. These increased risks could be offset by high crop sowing rates and weed seed collection at harvest. When no selective herbicides were available in wheat crops, the introduction of glyphosate‐resistant oilseed rape necessitated a return to a minimum‐tillage crop establishment system.  相似文献   

17.
Two biotypes of the grass weed barley grass (Hordeum glaucum), one resistant and the other susceptible to the herbicide paraquat, were studied along with their F1, F2 and F3 progeny to determine the inheritance of paraquat resistance. The plants were sprayed with 50–200 g a.i. paraquat ha?1. These concentrations killed the susceptible type. The data obtained from segregating populations indicated that paraquat resistance in H. glaucum is controlled by a single nuclear gene with incomplete dominance.  相似文献   

18.
Sequential applications of glyphosate followed by another postemergent herbicide, known as the "double knock" technique, were trialled for their effectiveness in controlling Conyza bonariensis . Combinations of glyphosate with and without 2,4-D followed by paraquat plus diquat, paraquat, or 2,4-D were tested at a range of follow-up application times in two field and two pot experiments. The results showed that paraquat plus diquat or paraquat following glyphosate or glyphosate plus 2,4-D provided highly effective weed control compared to glyphosate alone. The optimum timing for follow-up applications of paraquat or paraquat plus diquat was between 5 and 7 days after the initial glyphosate application. Combined applications of glyphosate and 2,4-D, compared to split applications, were not significantly different. However, following glyphosate application with 2,4-D >1 day later considerably reduced the level of control. This study showed that the double knock technique is highly effective in controlling C. bonariensis and is rapidly becoming an important tool in the management of this problem weed.  相似文献   

19.
Summary. In Malayan rubber plantations where the weed flora was dominated by grasses paraquat was superior to diquat as a herbicide. At the rates needed to give satisfactory grass weed control paraquat also gave an adequate control of broad-leaved weeds.
The rate of paraquat needed varied between 0.75 and 1.25 lb/ac depending on the weed flora and the growth stage of the rubber trees. In young rubber 1.0–1.25 lb/ac gave 8–10 weeks' control, but in mature rubber there was only 20% recovery 6 months after an application of 0.75 lb/ac. Where weed regrowth was very rapid after the initial spray, as in the case of Paspalum conjugation in young rubber, a second application some 2–3 weeks after the first was an advantage. The volume of water in which it was applied was not critical.
Rain falling soon after application did not reduce the herbicidal activity of paraquat. Paraquat did not injure rubber trees providing it was not sprayed onto green tissue and this feature combined with its inactivation by soil made it safe to use from a very early stage in the growth of the rubber trees.
L'évaluation du paraquat et du diquat pour la lutte contre les mauvaises herbes dans les plantations de caoutchouc  相似文献   

20.
Sequestration of paraquat away from its target site in the chloroplast has been proposed as a mechanism of paraquat resistance. However, no consensus has been reached as to where paraquat is sequestered. This study quantifies paraquat in leaf protoplasts of paraquat resistant (R) and susceptible (S) Lolium rigidum. Intact protoplasts were prepared from plants treated with commercial dose of paraquat for 2 h. Paraquat absorbed by the leaf protoplasts was determined by light absorption of reduced paraquat following concentration and purification using a cation-exchange resin. Leaf protoplasts from treated paraquat resistant plants contained 2- to 3-fold more paraquat than leaf protoplasts isolated from susceptible plants. Since paraquat is not metabolised in L. rigidum and paraquat readily enters chloroplasts of both R and S plants, this greater amount of paraquat in leaf protoplasts of R plant must be kept away from the target site (chloroplast). This result indicates that paraquat resistance in L. rigidum is associated with a cytoplasmic mechanism, most likely a greater rate of vacuolar sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号