首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Thiamethoxam (ACTARA® 25WG) was evaluated for its insecticidal activities against the bamboo powder post beetle Dinoderus minutus Fabricius (Coleoptera: Bostrichidae). The study showed that thiamethoxam had contact toxicity against D. minutus. Based on dose-mortality responses, LC50 values for thiamethoxam against D. minutus ranged from 1.74 to 7.94 μg ml?1. Laboratory and field exposure tests showed that thiamethoxam at concentration of atleast 10 μg ml?1 may have anti-oviposition or anti-feeding effects on D. minutus and can protect post harvest Bambusa vulgaris Schrad. culms against the infestation of this bamboo boring beetle.  相似文献   

2.
Biological and other alternative control methods were tested against the woolly beech aphid (Phyllaphis fagi). Field applications of mineral oil to the egg stage reduced initial aphid population by 75%, but only when the eggs were exposed to oil close to the time of hatching. Earlier oil treatments had no effect. Bioassays with the insect pathogenic fungus Lecanicillium lecanii (Verticillium lecanii) in the commercial formulation Vertalec® were conducted using different dosages, i.e. 1 × 10ml?1 (recommended dosage) and 2 × 107 ml?1. Both nymphs and adults were susceptible to fungal infection at both dosages. The existence of a dense wax-covering in adult P. fagi had no protective effect against fungal infection. In bioassays where leaves were treated with the recommended dosage of Vertalec, there was no difference in mortality measured after 14 days between adult P. fagi with an intact wax-layer and adult P. fagi where the wax-layer had been removed. In semi-field trials with two L. lecanii treatments at the recommended dosage, the aphid population was reduced. There was no enhanced effect with the addition of an additive to the fungal suspension or from covering the plants with a polypropylene cover. The results reveal potential alternative control methods against P. fagi populations. However, adequate control with L. lecanii probably requires several treatments as opposed to the two that were tested in the present experiment. Furthermore, efficiency may depend on summer temperatures and humidity.  相似文献   

3.
Pericopsis elata (a.k.a. African teak) is one of the most valuable timber species in Central Africa. Like other shade intolerant tropical tree species, P. elata could play a vital role in economic development, and ecological sustainability, but regenerates poorly following selective logging. Now endangered, there is a critical need for sustainable silvicultural systems to restore this once prominent timber species. To assess management options for P. elata we analyzed growth performance and survival in primary and secondary forest plots under burning and weeding treatments in Yoko Forest Reserve, Ubundu Democratic Republic of Congo. We transplanted nursery-grown seedlings of P. elata to experimental gaps and followed their growth and survival for 1 year. Seedlings in large canopy gaps 50 × 50 m were taller (mean difference; P = 0.006) and more likely to survive (mean difference; P < 0.001). Weeding improved both diameter (P = 0.024) and height (P = 0.007) growth rates; however, burning alone did not significantly improve the performance of P. elata seedlings. Our data suggest that P. elata regeneration is compatible with shelterwood harvesting and traditional swidden agricultural systems widely practiced in the region.  相似文献   

4.
During June 2013 to March 2014, several visits were made to the truffle-bearing areas of Kermanshah province, Iran. In this study, two specimens associated with roots of oak (Quercus brantii Lindl.) were identified as Tuber aestivum Vittad based on morphological and cytological characteristics. Internal transcribed spacer (ITS) region was amplified by PCR using primer pair ITS1/ITS4 and the sequences were analyzed. Phylogenetic trees constructed based on ITS sequences revealed that all Iranian specimens were in the same branch in a clade with T. aestivum reported from others. All T. aestivum sequences, including Iranian specimen, showed an average of 97 % similarity (ranged from 96 to 100 %). The results of physico-chemical analyses on soil samples collected from oak forest indicated that T. aestivum was prevalent in the sandy soil with rather low phosphorus concentration, low in organic matter, and high CaCo3. To our knowledge, this is the first report of T. aestivum and its host plant from Iran.  相似文献   

5.
In forest ecosystems, gap formation changes the allocation of abiotic resources and thus affects the survival and growth of understory plants. However, how tree seedling survival and growth respond to low-temperature events and the influencing mechanisms remain unclear. To clarify how low-temperature event limits the survival and growth of tree seedlings in the montane regions of eastern Liaoning Province, northeast China, we investigated temperature and light intensity within secondary forest gaps, and the survival and growth of Juglans mandshurica seedlings after a low-temperature event in the spring of 2014. Damage to seedlings due to low temperature significantly varied in different aspects. Seedlings in gaps on southeast-facing slopes were the most seriously damaged, followed by those in gaps on northeast-facing slopes. In contrast, seedlings in west-facing gaps and in control plots without slope aspect were not damaged. The freezing injury index for seedlings was negatively correlated with minimum temperature (r = ? 0.608, P < 0.01), but it was positively correlated with light intensity (r = 0.818, P < 0.01). In addition, height and root collar diameter of damaged seedlings were significantly lower than those of the undamaged seedlings (P < 0.01) during the early growing season (April–July), but no significant difference were observed during the late growing season (July–October) (P > 0.05). The extent of seedling damage was directly related to slope aspect. Low temperature and high light intensity were found to be the dominant factors affecting extent of damage to seedlings on southeast- and northeast-facing slopes.  相似文献   

6.
Knowledge regarding the interactive effects of elevated [CO2], warming and drought on dry mass production, allocation and water use efficiency (WUE) of tree seedlings is limited, particularly in trees exhibiting different stomatal regulation strategies. Seedlings of Callitris rhomboidea (relatively anisohydric) and Pinus radiata (relatively isohydric) were grown in two [CO2] (Ca (400 μmol mol?1) and Ce (640 μmol mol?1)) and two temperature (Ta (ambient) and Te (ambient?+?4 °C)) treatments in a sun-lit glasshouse under well-watered conditions prior to imposition of the drought. Ce increased mass production in C. rhomboidea (but not in P. radiata), while drought limited mass production in both species. Mass production was greatest in the combination of Ce, Te and well-watered conditions. Pinus radiata allocated relatively more dry mass into roots and had higher plant WUE than C. rhomboidea. Noticeably, mass allocation patterns in C. rhomboidea varied as a function of the treatments, but those of P. radiata were constant. Ce enhanced leaf WUE of both species, but to a greater degree under drought stress than well-watered conditions. Moderate drought stress increased both leaf and plant WUE compared to well-watered conditions. C. rhomboidea exhibited plasticity to variable climate conditions through morphological adjustments, while P. radiata exhibited a highly conservative strategy. Collectively, these findings indicate that the two species have different strategies in resource acquisition and utilisation under changing environmental conditions. Future studies on tree response to climate change need to fully consider the integration of species traits, including stomatal behaviour and hydraulic strategies.  相似文献   

7.
We studied leaf litter fall, decomposition and nutrient release patterns of Shorea robusta and Tectona grandis by using a litter bag technique to better understand the release pattern of nutrients to soil from leaf litter. Annual litterfall varied from 13.40 ± 2.56 t ha?1 a?1 for S. robusta to 11.03 ± 3.72 t ha?1 a?1 for T. grandis and the decay constant (k) of decomposed leaf litter was distinctly higher for T. grandis (2.70 ± 0.50 a?1) compared to S. robusta (2.41 ± 0.30 a?1). Biomass loss was positively correlated with the initial litter C, WSC, C/N and ash content in S. robusta and N, P and K concentration for T. grandis. Biomass was negatively correlated with lignin and L/N ratio for S. robusta and L, WSC, L/N and C/N ratio for T. grandis (P < 0.01). Nutrient use efficiency (NUE) and nutrient accumulation index (NAI) of S. robusta was higher than for T. grandis. The retranslocation of bioelements from senescent leaves ranked as P > N > K. Annual N, P and K input to soil through litterfall differed significantly between the two species in the following order: N>K>P. S. robusta was superior in terms of K and P return and T. grandis was superior in terms of N return. The two tree species showed a similar patterns of nutrient release (K > P > N) during decomposition of their leaf litter. Nutrients of N, K and P were the primary limiting nutrients returned to soil through litterfall with important roles in soil fertility and forest productivity.  相似文献   

8.
Cinchona officinalis (Rubiaceae) is an endemic species of the Loja Valley in southern Ecuador with medicinal uses. Because of over-exploitation in the nineteenth century and more recent disturbances to its ecosystem, C. officinalis populations are threatened. Currently, natural regeneration of the populations is low, despite its high plant regeneration and seed formation capacity. In the present study, an efficient protocol for germination, shoot proliferation and plantlets regeneration was developed for this species. Phenolic content and germination rate of C. officinalis seeds were compared with a control species, C. pubescens. Nodal segments from seedlings of C. officinalis were cultured on Gamborg medium supplemented with different combinations of plant growth regulators. Because the phenol content is high in C. officinalis, the phenolic should be removed with hydrogen peroxide or water washes to stimulate germination. Shoots and callus developed from nodal segments within 45 days using most of the tested combinations of plant growth regulators. The best rates of shoot proliferation, callus formation and adventitious buds were obtained in medium supplemented with 5.0 mg L?1 6-benzyl-aminopurine and 3.0 mg L?1 indole-3-butyric acid.  相似文献   

9.
Picea crassifolia and P. wilsonii, commonly used for afforestation in northern China, are increasingly likely to be subjected to high temperatures and soil drought stress as a result of global warming. However, little is known about the effects of these stresses on foliar photosynthesis in the two species. To investigate how photosynthetic characteristics and sensitivity respond to prolonged high temperatures and soil drought, foliar gas exchange and other closely related parameters were recorded from four-year-old seedlings of both species. Seedlings were grown under two temperature treatments (25/15 and 35/25 °C) and four soil water regimes [80, 60, 40 and 20% of maximum field capacity (FC)] for 4 months. Although all treatments significantly reduced photosynthetic rates (P n) of both species, P. crassifolia exhibited greater photosynthetic acclimation than P. wilsonii. Differences in photosynthetic acclimation were mainly related to variations in stomatal conductance (Cond) and the maximum quantum yield of PSII (F v/F m) between treatments. Indeed, higher Cond and F v/F m in all treatments were shown for P. crassifolia than for P. wilsonii. Moreover, photosynthesis in P. crassifolia exhibited inherently lower temperature sensitivities (broader span for the temperature response curves; lower b) and higher thermostability (invariable b between treatments). Further, severe drought stress (20% FC) limited the survival of P. wilsonii. Our results indicate that P. wilsonii is more susceptible to high temperatures and soil drought stress. Planting P. crassifolia would be more expected to survive these conditions and hence be of greater benefit to forest stability if predicted increases in drought and temperature in northern China occur.  相似文献   

10.
Taxus chinensis and T. wallichiana in have been threatened in their distribution areas in recent decades because of their over-exploitation and reduction and destruction of native habitats. Determining the genetic diversity in populations of the two species will provide guidelines for their protection and preservation. Two hundred and fifteen trees from six populations of T. chinensis and 150 sampled trees of T. wallichiana were sampled. Six microsatellite primer pairs selected from 16 primer pairs were used to investigate genetic variation at the population and species levels. Five yielded polymorphic alleles, and among the 13 putative alleles amplified, 11 were polymorphic (accounting for 76.33 %).Shannon’s information index (I) and percentage of polymorphic bands (PPB) (I = 0.202 and PPB = 67.22 % for T. chinensis; I = 0.217 and PPB = 65.03 % for T. wallichiana). Both species had low levels of genetic diversity (mean H o = 0.107, H e = 0.121 for T. chinensis; H o = 0.095, H e = 0.109 for T. wallichiana). Genetic differentiation among populations was higher (F ST = 0.189) for T. chinensis and lower (0.156) for T. wallichiana, indicating limited gene flow (Nm) among populations for T. chinensis (0.68) and T. wallichiana (0.65). Variation among individuals of T. chinensis was 63.59 and 73.12 % for T. wallichiana. Thus, the threatened status of the two conifers is related to a lack of genetic diversity. All populations are isolated in small forest remnants. An ex situ conservation site should be established with a new population for these species that comprises all the genetic groups for the best chance to improve their fitness under environmental stresses.  相似文献   

11.
The insecticidal efficacy of five diatomaceous earth (DE) formulations, Protect-It®, SilicoSec®, Insecto®, Perma-Guard? D-10 and Dryacide® was evaluated against adult Tribolium castaneum Herbst, the red flour beetle, on three oilseeds: safflower, sunflower and sesame. The DE formulations were applied at three rates: 0.5, 1 and 1.5 g/kg. The experiment was carried out at 26°C and 55 (±5)% RH in the dark. The mortality of T. castaneum adults was measured after 3, 7, 14 and 21 days exposure. After the 21-day mortality count, all surviving insects were removed and the samples retained under the same conditions for a further 45 days to assess progeny production (F1). Significant differences were recorded among the three oilseed types as well as between the DE formulations tested. After 21 days exposure, even at the lowest treatment rate, adult mortality was high (>90%) in safflower for all DE formulations. In contrast adult mortality was significantly lower in the case of sesame. Increased application rates improved the efficacy of DEs in sunflower and sesame. Even at the lowest rate the complete suppression in progeny production was achieved on treated safflower. The greatest number of progeny was recorded for treated sunflower seeds. Protect-It® and Dryacide® were the most efficient DE formulations against T. castaneum.  相似文献   

12.
Gardenia jasminoides and Rosa chinensis are economically important horticultural plants in China. Frankliniella occidentalis and Thrips hawaiiensis are serious coexisting pests that previously demonstrated opposite population trends on G. jasminoides and R. chinensis flowers. To further study the different performances between F. occidentalis and T. hawaiiensis, we investigated their population dynamics in the field (for 5 years) and their life history characteristics on the two flowers in the laboratory. In the field, the density of F. occidentalis was lower than that of T. hawaiiensis on G. jasminoides but was higher than that of T. hawaiiensis on R. chinensis. Under laboratory conditions, F. occidentalis showed significantly slower development, and lower survival and fecundity levels than T. hawaiiensis on G. jasminoides, but the opposite was true on R. chinensis. Significant differences in the net reproductive rate (R 0) between F. occidentalis and T. hawaiiensis were observed, with respective values of 38.66 ± 2.85 and 47.91 ± 2.70 on G. jasminoides, and 55.64 ± 2.15 and 32.45 ± 2.16 on R. chinensis. The intrinsic rates of increase (r m ) of F. occidentalis and T. hawaiiensis were 0.156 ± 0.008 and 0.198 ± 0.007, respectively, on G. jasminoides, and 0.172 ± 0.003 and 0.165 ± 0.002, respectively, on R. chinensis. Thus, the performances of both thrips with respect to population size in the laboratory were in accordance with those in the field, suggesting that the innate capacity for insect population increases may directly impact their population dynamics in fields. Thus, the population performance of different thrips species on flowers is species-dependent, which could be exploited in thrips control programs by breeding pest-resistant cultivars.  相似文献   

13.
Replantation of degraded forest using rapidgrowth trees can play a significant role in global carbon budget by storing large quantities of carbon in live biomass,forest floor,and soil organic matter.We assessed the potential of 20-year old stands of three rapid-growth tree species,including Alnus subcordata,Populus deltoides and Taxodium distichum,for carbon(C) storage at ecosystem level.In September 2013,48 replicate plots(16 m × 16 m) in 8 stands of three plantations were established.36 trees were felled down and fresh biomass of different components was weighed in the field.Biomass equations were fitted using data based on the 36 felled trees.The biomass of understory vegetation and litter were measured by harvesting all the components.The C fraction of understory,litter,and soil were measured.The ecosystem C storage was as follows: A.subcordata(626.5 Mg ha~(-1)) [ P.deltoides(542.9Mg ha~(-1)) [ T.distichum(486.8 Mg ha~(-1))(P \ 0.001),of which78.1–87.4% was in the soil.P.deltoides plantation reached the highest tree biomass(206.6 Mg ha~(-1)),followed by A.subcordata(134.5 Mg ha~(-1)) and T.distichum(123.3 Mg ha~(-1)).The highest soil C was stored in theplantation of A.subcordata(555.5 Mg ha~(-1)).The C storage and sequestration of the plantations after 20 years were considerable(25–30 Mg ha~(-1) year~(-1)) and broadleaves species had higher potential.Native species had a higher soil C storage while the potential of introduced species for live biomass production was higher.  相似文献   

14.
Previous studies showed that Chaetomium globosum ND35 fungus fertilizer can improve the microbial community structure and enzyme activities of replanted soil. However, it remains unclear whether can improve the physiological and ecological characteristics of plants under successive rotation. In this study, we investigated the photosynthetic, physiological, and biochemical indexes including photosynthetic parameters, chlorophyll fluorescence, and chlorophyll content of 1-year-old poplar seedlings under seven different doses (range from 0 to 1.67 g kg?1) of C. globosum ND35 fungus fertilizer to study the effects of fungus fertilizer on photosynthesis of Poplar. Our results showed that: (1) With increasing application of fungus fertilizer in replanted soil, chlorophyll content of poplar leaves (Chl) increased, while physiological indexes such as electron transport rate (ETR), net photosynthetic rate (P n), quantum efficiency (Φ), nitrate reductase (NR) activity and root vigor initially increased and then declined. Meanwhile, heat dissipation that depended on the xanthophyll cycle declined and non-photochemical quenching (NPQ) initially increased and then decreased. When the dose of C. globosum ND35 fungus fertilizer was 0.67 g kg?1 (T3) and 1.00 g kg?1 (T4), excess light energy of photosynthetic apparatus was reduced, and photosynthetic apparatus distributed more light energy to the direction of photochemical reactions, which improved the efficiency of energy use. Plant height and biomass of leaves, stems, and roots were maximum at T3. We conclude that applying appropriate amounts of C. globosum ND35 fungus fertilizer can improve root physiological activity and capacity for use of light by poplar leaves. This can improve the operating states of the photosynthetic apparatus and lead to increased photosynthetic efficiency of poplar leaves and accumulation of dry matter. This suggests a strategy to alleviate the successive rotation obstacle of soil nutrient depletion.  相似文献   

15.
Volatile organic compounds (VOCs) released from Chamaecyparis formosensis, Cryptomeria japonica, Cunninghamia lanceolata, Chamaecyparis obtusa var. formosana, and Taiwania cryptomerioides five major building and interior decoration timbers and their essential oil components were analyzed using GC–MS and TD/GC–MS/FID. Results showed that C. obtusa var. formosana had the highest yield of essential oil (3.42%), followed by C. formosensis (3.14%), while C. japonica had the lowest yield (0.95%). Moreover, oxygenated sesquiterpene was the highest relative content in all five essential oils and their main constituents were trans-myrtanol (18.04%), 1-epi-cubenol (15.99%), cedrol (62.26%), α-cadinol (26.42%), and α-cadinol (27.98%), respectively. In terms of emission quantity of top VOC, the results showed the decreasing order of C. formosensis (myrtenal, 74.21 mg/m2)?>?T. cryptomerioides (thujopsene, 12.00 mg/m2)?>?C. lanceolata (α-cedrene, 10.27 mg/m2)?>?C. obtusa var. formosana (α-pinene, 8.05 mg/m2)?>?C. japonica (α-cedrene, 4.25 mg/m2). C. formosensis had a greater amount of VOCs emitted and hence gave off more fragrance than C. obtusa var. formosana initially. However, after indoor exposure of 24 weeks, the VOC emission quantity of C. obtusa var. formosana exceeded that of C. formosensis. α-Cedrene and thujopsene were the top two major VOCs of both C. lanceolata and T. cryptomerioides. However, they both showed a trend of decrease in emission with prolonged exposure. All five plantation timbers showed good antifungal, antimicrobial, antibacterial, and antitermitic properties, making them ideal materials for interior decoration. Not only do they have strong bioactivities, they can also provide a fragrant and healthy living environment.  相似文献   

16.
Tea tree oil is extracted from the leaves and twigs of Melaleuca alternifolia (Maiden & Betche) Cheel, and it is widely used in medicines, food preservatives, cosmetics and health care products. Traditional propagation of M. alternifolia from seeds does not necessarily transfer the desired characteristics from their mother trees, the seedlings are not uniform, and the multiplication rate from cuttings is relatively low. For these reasons, it is necessary to develop tissue culture techniques for this species. This study showed that an efficient explant initiation medium for M. alternifolia was MS 1/2 + BA 0.6 mg L?1 + NAA 0.1 mg L?1 + sucrose 30 g L?1, which yielded a 75.9 % initiation rate. An efficient multiplication medium was MS + BA 0.3 mg L?1 + NAA 0.15 mg L?1 + sucrose 30 g L?1, which yielded a 4.3 multiplication rate and 3.2 cm shoot length. The rooting medium was MS 1/2 + IBA 0.1–0.25 mg L?1 + sucrose 15 g L?1, which yielded a 100 % rooting rate, 2.94–3.32 roots per individual and 1.36–1.44 cm root length. Local red-core soil was suitable as a transplant medium, and yielded 98 % survival. This study improved the tissue culture technique for mass-propagation of M. alternifolia, enabling the production of high quality plants for market.  相似文献   

17.
Tomicus minor Hartig (Col., Curculionidae, Scolytinae), occurring on Pinus sylvestris L., is a species which demonstrates high reproductive capability on weakened stands, accelerating the process of forest death. In protected areas, T. minor is regarded as a sensitive bioindicator that reacts to decline in the health and vitality of forests. Although there have been many publications concerning T. minor, no precise method has yet been given for estimating its population so as to enable the monitoring of forest vitality and assessment of the role played by T. minor in the forest ecosystem. The aim of the present work is to develop a statistical method for estimating populations of T. minor, requiring minimum work and interference with the forest ecosystem and permitting the computation of estimation errors. Research was carried out in the years 1992–2011 in pine stands aged over 80 years, growing in a variety of habitats and situated at varying distances from sawmill timber yards. Attack density of T. minor was measured on trap logs made from uninfested living trees. The population of T. minor on the trap logs was described using a multiple linear regression model with two explanatory variables. Among the features investigated, the T. minor population was found to depend significantly on the number of egg galleries on the fifth metre of the trap log counted from the thinner end (p < 0.001) and on the diameter of the trap log in bark at the thinner end (p < 0.05). The model explains approximately 85% (R 2 = 0.8564) of the variation in the total number of T. minor egg galleries on the trap logs. The numbering of units beginning from the thinner end of the log enabled increased precision in determining the model parameter resulting from the concentration of egg galleries on certain units of the log. In all validated plots, the mean real and model values for the number of T. minor egg galleries on the trap logs are similar (p > 0.5), confirming the high accuracy of the developed model.  相似文献   

18.
The legume Cratylia argentea associated to Brachiaria brizantha—Toledo-grass (Bb + Ca) and Toledo-grass alone (Bb) were evaluated under grazing conditions by Holstein × Zebu heifers. Three evaluation periods during three consecutive years, were performed. We measured, daily live-weight gains of heifers (DWG, g/day); biomass dry matter (BDM, kg/ha) at beginning and end of each grazing period. On plant samples, were measured percentages of crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), lignin, in situ DM degradability (ISDMD), and voluntary biomass DM intake (VBI, g/LW0.75) using the Cr2O3/in situ indigestibility technique. A completely randomized design was applied, using heifers as experimental units for DWG gains and VBI. At the beginning of the grazing, the BDM for Bb + Ca and Bb–considering the three periods-averaged, 3065 and 936 kg/ha, respectively. Crude protein content of C. argentea was around 20 %; and for Bb + Ca or Bb, ranged from 8.7 to 4.6 %. In either treatment, in situ DM degradability averaged 72.6 % (P ≥ 0.05), regardless of the botanical component type. Biomass DM intake was 83.02 (Bb + Ca) and 89.22 (Bb) g/LW0.75. The DWG gains (g/heifer) for Bb + Ca and Bb were (per period): 829 and 574 (first); 469 and 118 (second); and 534 and 508 (third). This study showed that the Bb + Ca association was better to improve the daily gain of F1 Holstein × Zebu heifers, as compared to Bb alone. Also, C. argentea associated to a low to medium-quality grass improved the nutritional value of the diet without affecting the biomass DM intake.  相似文献   

19.
Where there is limited availability of conventional fertilizers, the use of organic materials is considered a viable alternative to increase the productive capacity of soils. Many potential plant residues remain underutilized due to limited research on their use as a nutrient source. In this study, the nitrogen supplying capabilities of ten rarely-used leaf biomass sources (Acacia auriculiformis, Baphia nitida, Albizia zygia, Azadirachta indica, Senna siamea, Senna spectabilis, Tithonia diversifolia, Gliricidia sepium, Leucaena leucocephala and Zea mays) were tested based on their nutrient content, N mineralization patterns and effect on maize yield (in comparison with inorganic fertilizer). N mineralization was studied in the laboratory using an incubation experiment. Field trials were also established using a randomized complete block design. Plant residues were applied at 5 t dry matter ha?1 a week before planting maize while fertilizer was split-applied at 90 kg N ha?1 on designated plots. From the results on plant residue chemistry, most of the plant residues recorded relatively high N concentration (≥24.9 g kg?1) and low C/N ratio (≤20.1) although neither N content nor C/N ratio significantly (p > 0.05) affected their N mineralization patterns. Leaf biomass application of B. nitida, A. auriculiformis, A. zygia and maize stover resulted in an initial net N immobilization that lasted for 14 days. Application of all plant materials significantly increased the biological yield and N uptake of maize with G. sepium and T. diversifolia producing the greatest impact especially in the major rainy season. Relative to the control, total grain yield after four cropping seasons was comparable between inorganic fertilizer (9.2 t ha?1), G. sepium (8.8 t ha?1) and T. diversifolia (9.4 t ha?1) treatments. The results on maize biological yield were significantly correlated with the effects of the treatments on N uptake. The findings suggest that in locations where inorganic fertilizers are limited, leaf biomass from G. sepium and T. diversifolia could offer the most suitable option in comparison with the other species used in this study.  相似文献   

20.
The naturally occurring Verticillium nonalfalfae shows promise for biocontrol of the highly invasive Tree of Heaven (Ailanthus altissima), but might also bear a risk for non-target tree species. In this study, we conducted inoculations on potted seedlings of A. altissima as well as on eight indigenous and two invasive tree species associated with Tree of Heaven in Austria. Although vascular discolourations developed in all inoculated tree species, V. nonalfalfae was reisolated from Ailanthus and eight of the ten non-target-species, whereas typical disease symptoms and mortality only occurred on A. altissima. Results confirmed high susceptibility (S) of A. altissima to V. nonalfalfae but indicated tolerance (T) of Acer campestre, Acer pseudoplatanus and Quercus robur, possible resistance (PR) of Fraxinus excelsior, Populus nigra, Tilia cordata, Ulmus laevis and Ulmus minor and resistance (R) of Fraxinus pennsylvanica and Robinia pseudoacacia to this potential biocontrol agent. Results from seedling inoculations were confirmed by cursory field observations in Ailanthus-inoculated forest stands, where admixed A. campestre, A. pseudoplatanus, F. excelsior, Populus alba, R. pseudoacacia and U. laevis canopy trees remained asymptomatic, while mortality was induced in Ailanthus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号