共查询到20条相似文献,搜索用时 15 毫秒
1.
传统的瓯柑病虫害检测方式主要依靠人工肉眼查看,效率较低,而且需要检测人员具备丰富的专业知识。针对这些问题,文章提出了基于卷积神经网络和迁移学习的瓯柑病虫害识别方法。首先选取Xception、InceptionResNetV2、MobileNetV2、DenseNet121四种深度卷积模型,然后采用迁移学习策略,将各个模型在PlantVillage数据上训练得到预训练模型,迁移到瓯柑病虫害识别模型中,并对比各个模型的识别性能。结果表明:(1)迁移学习能够大大提高模型的泛化能力,经过迁移学习后,4种模型在瓯柑病虫害训练集和验证集上的准确率均达到了85%以上,其中Xception迁移模型表现最好,准确率在训练集和验证集上分别为99.3%,97.1%;(2)在测试集上,Xception迁移模型的整体性能优于其他3种迁移模型,总体测试准确率达到了97.38%,精确率、召回率和F1 Score也均达到了97%以上。综上所述,Xception迁移模型识别精确率高,实用性强,可为今后瓯柑病虫害防控提供参考。 相似文献
2.
使用竹片图像实现竹片缺陷自动识别,目前深度学习可以有效地解决该类问题,但是必须使用大量样本数据做训练才能获得较高的识别准确率。当图像数量有限时,利用基于迁移学习的方法,把经过预训练的卷积神经网络模型进行迁移,即共享卷积层和池化层的权重参数,调整新网络模型的超参数,并建立一个包含4种共计6 360张竹片缺陷图像的数据库,把图片分成4种训练集测试集形式,即80%训练、20%测试;60%训练、40%测试;40%训练、60%测试;20%训练、80%测试,分别利用支持向量机SVM分类方法、深度学习方法和迁移学习方法进行训练和测试,并将这3种方法作对比。最后,通过构建竹片缺陷识别的混淆矩阵对迁移学习进行具体分析与说明。结果表明,按照80%训练、20%测试的识别准确率最高,通过迁移学习得到的竹片缺陷最高识别精度分别达到98.97%,比普通深度学习提高了11.55% ,比SVM分类方法提高了13.04%。说明迁移学习比普通深度学习和传统支持向量机SVM分类方法更适合用于小样本数据集的分类识别,并且效果优于普通深度学习和 SVM 分类方法。 相似文献
3.
4.
5.
基于迁移学习的番茄叶片病害图像分类 总被引:4,自引:1,他引:4
针对卷积神经网络对番茄病害识别需训练参数较多,训练非常耗时的问题,将迁移学习应用于AlexNet卷积神经网络,对病害叶片和健康叶片共10种类别的番茄叶片进行分类研究。使用14 529张番茄叶片病害图像,随机选择70%作为训练集,30%作为验证集,对AlexNet卷积神经网络模型结构进行迁移,利用在Imagenet图像数据集上训练成熟的AlexNet模型和其参数对番茄叶片病害识别。在训练过程中,固定低层网络参数不变,微调高层网络参数,将番茄病害图像输入到网络中训练网络高层参数,用训练好的模型对10种类别的番茄叶片分类,并进行了20组试验。结果表明:该算法在训练迭代474次时使网络模型很好的收敛,网络对验证集的测试平均准确率达到95.62%,与从零开始训练的AlexNet卷积神经网络相比,本研究算法缩短了训练时间,平均准确率提高了5.6%。采用迁移学习所建立的病害分类模型能够对10种类别的番茄叶片病害快速准确地分类。 相似文献
6.
为提高设施生产中对各生长阶段生菜鲜重的无损估测精度进而更好地指导生产,提出一种利用生菜冠层图像为输入,基于迁移学习技术和卷积神经网络估测鲜重的方法,对比分析AlexNet、VGG-16、GoogLeNet和ResNet-18模型迁移学习后在生菜鲜重估测任务上的效果;同时,对比不同迁移学习方法对模型性能的影响,通过冻结卷积层和减少全连接层改善模型的参数量和训练速度。结果表明:1)AlexNet和VGG-16两种模型能较好的实现生菜鲜重的估测,AlexNet模型的决定系数R2为0.928 0,标准均方根误差NRMSE为19.08%,VGG-16模型的R2为0.938 0,NRMSE为17.71%,但VGG-16模型存在参数量大训练慢的问题,综合考虑选取AlexNet模型迁移学习后作为生菜鲜重估测模型;2)与全新学习方法相比,在预训练模型基础上对生菜鲜重数据集进行迁移学习,可以明显提升生菜鲜重估测模型的训练速度和准确度;3)冻结卷积层能显著加快模型的训练速度,训练时间可减少18%,减少全连接层在保持精度的前提下能大幅度减少模型的参数量。基于迁移学习的卷积神经网络模型可用于生菜鲜重的快速估测,该方法也可以拓展应用到其他叶类蔬菜的鲜重估测中。 相似文献
7.
为实现水稻氮素营养的快速、准确识别,采用改进的VGG 16网络和迁移学习相结合的水稻氮素营养诊断识别方法,以杂交稻‘两优培九’为试验对象进行田间试验,设置4组不同的施氮水平(施氮量分别为0、210、300和390 kg/hm2),在水稻幼穗分化期和齐穗期,扫描获取水稻叶片图像数据;通过图像预处理方法,对数据进行扩充;构建改进的VGG16和迁移学习相结合的网络模型对水稻叶片图像数据进行氮素营养诊断识别。结果表明:1)在幼穗分化期时,改进的VGG16网络的识别准确率为93.1%,模型大小约为迁移学习VGG16模型的1/6,训练时间约为1 261 s。2)在水稻幼穗分化期和齐穗期,该模型微调后的识别准确率均能达到95%以上。基于迁移学习和改进的VGG16网络所建立的水稻氮素营养诊断模型具有较好的泛化能力,可以预测水稻氮素营养状况,为水稻氮素营养诊断提供参考。 相似文献
8.
【目的】水稻病虫害是引起水稻减产的重要因素。准确地识别水稻病虫害类型,及
时采取有效的针对性预防措施,有助于避免因水稻减产带来的经济损失。然而,聚焦于人
脸和花草等常见事物的识别技术,在农业领域特别是水稻病虫害识别领域应用较少,而
目前已有的水稻病虫害识别研究存在数据量小和数据种类不够丰富等问题。【方法】文
章搜集了2.0372 万张水稻病虫害图片,并以此构建了完整的水稻病虫害识别数据集,基
于迁移学习的思想,在ResNet50 的预训练模型基础上构建了一个针对16 种主要水稻病
虫害识别的深度模型。同时,考虑实际应用的需要,搜集了9 928 张其他图片(包括人
像、汽车等),结合9 675 张水稻病虫害图片,构建了一个二分类数据过滤模型,以此来
避免非水稻病虫害图片被识别为某一类病虫害的不合理结果。【结果】有预训练模型验
证结果的top-1 准确率达到了95.23%,F1 系数为77.83%,相较无预训练模型top-1 准确
率提升了24.51%,F1 系数提升了56.66%。数据过滤模型的过滤准确度达到了99.60%。
【结论】基于迁移学习的水稻病虫害识别模型,使水稻病虫害识别结果更加准确。非水稻病
虫害过滤模型,有效地解决了实际应用中非水稻病虫害图片被错分为某一类水稻病虫害的
问题。 相似文献
9.
在农业生产中,虫害已经成为影响作物产量和质量的主要威胁之一,针对传统识别方法对复杂背景下虫害图像识别准确率和效率低等问题,本研究提出一种基于迁移学习和改进残差网络的虫害图像识别方法。首先,利用数据增强技术对采集的橘小实蝇虫害图像进行样本数据的扩充;再在ResNet-34模型的基础上,增加了2个注意力模块层,并重新设计了全连接层模块,获得能够改进后的网络模型;最后利用迁移学习的方法将预训练的参数权重迁移到本模型中进行训练,并在试验过程中分析学习方式、样本量、学习率、批量大小等参数对模型性能的影响。结果表明,采用旋转、翻转和亮度变换操作对图像进行数据扩充的数据集,在训练模型的全部层的迁移学习方法中获得99.77%的测试准确率。本研究提出的模型具有较高的识别准确率和较强的鲁棒性,可为实现复杂背景下虫害的识别提供参考。 相似文献
10.
番茄叶部病害严重影响了番茄的产量和质量,为实现在移动设备实时对番茄进行病害识别,提高番茄的产量,减少种植者的损失。本研究提出将轻量级网络模型MobileNet V2和迁移学习的方式相结合,对番茄早疫病、番茄细菌性斑疹病、番茄晚疫病、番茄叶霉病、番茄斑枯病、番茄红蜘蛛病、番茄褐斑病、番茄花叶病、番茄黄化曲叶病等9种叶部病害图像以及健康番茄叶片图像进行分类识别,首先将数据集按照9∶1的比例分为训练集和验证集,对于训练模型根据迁移学习的方式分别采用不冻结卷积层、冻结部分卷积层、全部冻结卷积层的方式获得3种模型,然后在模型最后加上2层全连接层并用Dropout层防止过拟合,接着通过Softmax层输出实现对番茄病害图像分类识别,最后利用验证集来统计模型的准确率和损失值。其中,冻结部分卷积层准确率最高,达到93.67%。另外,通过试验对比传统网络VGG16、ResNet50训练集和验证集的准确率、损失值及运行时间,其中迁移学习的MobileNet V2模型的准确率最高,运行时间最短。该研究提出的基于MobileNet V2和迁移学习的番茄病害识别研究方法识别效果较佳,速度较快,为在移动设备实时对... 相似文献
11.
12.
【目的】研究一种基于卷积神经网络的危害棉叶症状识别技术,提高棉花病虫害的识别准确率。【方法】基于caffe深度学习框架,在CaffeNet网络结构基础上增加一层全连接层(记为CaffeNet+1),并结合迁移学习方法对网络进行训练。采集健康、红叶茎枯、红蜘蛛、枯萎、黄萎、双斑萤叶甲、蚜虫、褐斑棉叶图像各975张作为样本集。随机选取验本集中80%的图像样本作为训练集,剩余20%作为测试集。【结果】迁移学习方式下学习率取0.005时的CaffeNet+1模型最优,在测试集上其识别准确率可达98.9%。【结论】在与全新学习模式下的CaffeNet模型相比,该方法可加速网络模型收敛,且具有更高的识别准确率,该技术方法在准确识别田间病虫害棉叶后表现症状的图像写出来具体方面具有重要的应用价值。 相似文献
13.
为提高果树病虫害危害程度分级精度进而更好地指导果园病虫害防治,采用迁移学习技术与GoogLeNet模型相结合的方法,对6种果园作物的25类病虫害样本进行识别与危害程度分级研究;同时,探究不同数据集大小以及不同优化算法对模型性能的影响;基于MATLAB平台设计了一款可视化的病虫害识别与分级系统。结果表明:1)基于迁移学习的GoogLeNet模型,对病虫害识别精度可达99.35%,危害程度分级精度可达92.78%;2)在相同训练参数下,本研究模型比AlexNet、VGG-16、ResNet-18、SqueezeNet、原GoogLeNet及MobileNet-v2模型验证精度提高了2.38%~11.44%,并且收敛速度最快;3)本研究模型识别精度随着数据集的增大而提高;在3种优化算法中SGDM算法耗时最短且精度最高,更适合本研究模型。通过拍摄果树叶片病害区域图像,本研究设计的系统能够在0.43 s左右准确识别出果树种类、病害类型以及危害等级等信息。 相似文献
14.
15.
提高智能采棉机效率的一个重要途径是实现单个、重叠和遮挡棉花的识别,避免误采摘和漏采摘。针对不同形态棉花的识别,常规的特征提取方法难以达到令人满意的结果,因而采用基于迁移学习的棉花识别方法和基于迁移模型的特征提取与极限学习机(extreme learning machine,ELM)相结合的方法进行棉花识别研究。首先更改AlexNet、GoogleNet、ResNet-50模型分类层和设置相关参数,用训练好的迁移模型对棉花验证集识别,然后利用训练好的迁移模型进行棉花数据集特征提取,再用训练集的特征训练ELM模型,统计不同隐含层神经元个数的ELM模型对棉花的识别准确率。AlexNet、GoogleNet、ResNet-50迁移模型识别率依次为92.03%、93.19%、93.68%;使用特征提取再与ELM结合的方法,准确率比对应迁移模型分别提高了1.97、1.34、1.55百分点。结果表明,迁移模型对小样本棉花识别也有较高准确率,基于特征提取与ELM相结合的方法可进一步提高准确率。 相似文献
16.
17.
为了提高水稻病害计算机视觉识别的准确性,研究提出针对水稻白叶枯病、赤枯病、胡麻斑病和纹枯病4种病害进行分类识别的模型。利用计算机视觉和机器学习软件库opencv对病斑图像进行随机旋转、随机翻转、随机亮度变换及随机对比度等处理方式扩充样本,应用区域生长、基于水平集的CV模型、显著性检测3种算法对图像进行分割。通过Tensorflow深度学习平台,构建网络层分别为6层(输入层32×32×3,卷积核大小为5×5)和8层(输入层227×227×3,卷积核大小为11×11、5×5、3×3)的卷积神经网络,将图像分割后得到的3组数据,均以8∶2的比例分别作为卷积神经网络的训练数据和测试数据,训练后得到6个模型,并结合召回率、F1评价指标对模型进行评估。结果表明,6个模型中训练识别准确率最低为97.66%,测试识别准确率最低为95.31%,其中以显著性检测分割算法和8层网络层的卷积神经网络结合得到的模型效果最佳,其训练识别准确率为99.99%,测试识别准确率为99.88%,相较于端到端的卷积神经网络水稻病害识别结果也有所提升。 相似文献
18.
黄丹 《河北北方学院学报(自然科学版)》2022,(9):1-7+13
应用传感器实现钢琴教学时,为随时获取钢琴演奏者的演奏手势是否规范,需要合理的钢琴演奏手势识别技术,为此提出基于深度迁移学习的钢琴演奏手势识别技术研究。采用IU-EKF算法实现钢琴演奏手势的定姿,获取演奏者的演奏手势姿态,将该演奏手势信息作为数据样本,利用MEMS惯性传感器采集钢琴演奏手势姿态数据,并通过状态空间模型做出手势姿态估计。以该模型为基础,利用多特征提取方法,获取手势特征,并对不同特征作出归一化处理,将处理后的结果输入到极限学习机(VGG-16)网络模型中,通过该模型的深度迁移学习与训练,实现钢琴演奏手势的识别。经实验验证:该方法能有效提取演奏者手背、手指下关节、手指上关节的各角度特征,且相较于其他方法该方法具有较高的识别精度,能够在不同的时间有效识别手指上、下关节俯仰角的变化情况。 相似文献
19.
20.
【目的】农作物生长过程中,作物产量会受到各种病害影响,实现自动精准地识别农作物病害以及病害程度的测定是农作物病害防治的关键。【方法】文章设计了一种基于卷积神经网络的农作物病害的识别方法并建立了农作物病害识别模型,模型利用10种作物中常见的59种病害类型的叶片图像数据集进行训练,并对模型的训练过程和训练结果进行评估。【结果】(1)农作物病害识别模型对59种病害类型的总识别精度达到0.83,部分类别的识别率高于0.9;(2)当训练的迭代次数增加到50轮以上时,农作物病害识别模型的性能不再提升,此时数据集图像的数量对模型性能的影响较大。【结论】实验证明,利用卷积神经网络进行农作物病害识别具有较高的可行性和准确性,为农作物病害的防治打下基础。 相似文献