首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 359 毫秒
1.
【目的】探索吉兰泰及周边地区蒸散发的时空变化规律。【方法】以吉兰泰为对象,利用MODIS数据通过SEBAL模型估算了研究区2017年植被生长季5—10月的日蒸散发,并分析了蒸散发与环境因子的相关性。【结果】①生长季日平均蒸散量整体趋势呈单峰型分布趋势,日均蒸散量最大值在7月(3.98 mm),最小值在10月(1.11 mm);②在空间分布上,研究区东南部蒸散发最高,东北部蒸散发最低;不同土地利用类型中蒸散发值由大到小分别为林地、耕地、草地、戈壁、沙漠;各土地利用类型蒸散发量的时间动态表现一致,呈生长期>生长初期>生长后期;③归一化植被指数、高程与蒸散发正相关,风速以及地表温度与蒸散发负相关。【结论】SEBAL模型估算的蒸散发与P-M作物系数法的蒸散发进行对比,相对误差在允许范围之内,表明SEBAL模型对本研究区蒸散发的估算是可靠的。研究区靠近山地的蒸散发大于荒漠区的蒸散发。在植被生长季中生长初期的蒸散发受温度和风速影响最大,生长期和生长后期的蒸散发受地表温度和高程影响最大。  相似文献   

2.
本文利用岷江源区1961-2010年逐日气象数据,采用FAO 56 Penman-Monteith和Hargreaves公式计算参考作物蒸散量,并以FAO 56 Penman-Monteith为标准对Hargreaves公式适用性进行评价,通过对Hargreaves公式转换系数C_0进行修正,建立基于月尺度的参考作物蒸散发公式,结合RegCM4.0区域模型生成的温度数据,对未来(2011-2099年)研究区参考作物蒸散发量变化进行预测。研究结果表明:通过通径分析发现,在岷江源区气温是影响参考作物蒸散量最重要的气象因子,采用基于温度法的参考作物蒸散发公式具有理论依据;采用未修正的Hargreaves公式明显高估了该区域参考作物蒸散量,特别是在雨季4-10月;修正后的Hargreaves公式绝对偏差与相对偏差显著减小,与FAO 56Penman-Monteith月值之间均方根误差RMSE为3.76mm、效率指数EF为0.39、可决系数CD为0.84,吻合系数d为0.8,能够满足研究区参考作物蒸散发估算精度;在未来气候变化情景下岷江源区参考作物蒸散量总体呈增加趋势,气候倾向率为5.6mm/(10a)。  相似文献   

3.
基于遥感技术估算作物蒸散发(Evapotranspiration,ET)对农业用水效率评价和精量灌溉决策具有重要意义。结合Sentinel-2数据和农田连续地面观测资料,利用混合双源蒸散发模型(Hybrid dual-source scheme and trapezoid framework-based evapotranspiration model,HTEM)对宁夏回族自治区中卫市2019年两个试验田玉米主要生育期(5—8月)的蒸散发量进行估算,并用水量平衡法对遥感估算结果进行验证和评价。结果表明:Sentinel-2数据具有高时空分辨率,能够与研究区复杂的种植地块相匹配,减少了混合像元的数量;遥感反演参数与地面观测数据拟合度较高,研究区2019年遥感反演的玉米田净辐射量均方根误差为36.256 W/m2。利用HTEM模型估算可得,主要生育期内研究区两个玉米试验田的日均实际蒸散发量分别为4.269 mm/d和4.339 mm/d,实际蒸散发总量分别为525.114 mm和533.690 mm,其中植被蒸腾量分别为363.483 mm和358.196 mm,生育初期主要以土壤蒸发形式消耗水分,随着作物的生长,在生育中后期主要以植被蒸腾的形式消耗水分。ET遥感反演结果与水量平衡结果之间差别不显著,两个观测点绝对误差分别为13.533 mm和7.774 mm。因此,结合地面连续观测系统和Sentinel-2数据估算研究区玉米生育阶段蒸散发量具有较高的精度,可为作物耗水规律研究及区域农业水管理提供技术支撑。  相似文献   

4.
岷江源区Hargreaves法适用性与未来参考作物蒸散量预测   总被引:3,自引:0,他引:3  
利用岷江源区1961—2010年逐日气象数据,采用FAO 56 Penman-Monteith和Hargreaves公式计算参考作物蒸散量,并以FAO 56 Penman-Monteith为标准对Hargreaves公式适用性进行评价,通过对Hargreaves公式转换系数C0进行修正,建立基于月尺度的参考作物蒸散发公式,结合Reg CM4.0区域模型生成的温度数据,对未来(2011—2099年)研究区参考作物蒸散发量变化进行预测。研究结果表明:通过通径分析发现,在岷江源区气温是影响参考作物蒸散量最重要的气象因子,采用基于温度法的参考作物蒸散发公式具有理论依据;采用未修正的Hargreaves公式明显高估了该区域参考作物蒸散量,特别是在雨季4—10月;修正后的Hargreaves公式绝对偏差与相对偏差显著减小,与FAO 56 Penman-Monteith月值之间均方根误差RMSE为3.76 mm、效率指数EF为0.39、可决系数CD为0.84,吻合系数d为0.8,能够满足研究区参考作物蒸散发估算精度;在未来气候变化情景下岷江源区参考作物蒸散量总体呈增加趋势,气候倾向率为5.6 mm/(10 a)。  相似文献   

5.
实际蒸散发是水文循环的关键环节,分析灌区实际蒸散发及其影响因素对灌区水资源的高效利用和农业高质量发展具有重要意义。然而,目前蒸散发的影响因素研究在确定主要因素时往往采用解释力较差的传统统计学方法,在相关性分析时忽略了蒸散发与其影响因素在空间上的相关性。因此利用改进的随机森林模型确定实际蒸散发的主要影响因素,并通过岭回归模型和地理加权回归模型探究实际蒸散发与其影响因素的时空相关关系。结果表明:(1)在灌溉期,地表净辐射、平均气温、叶面积指数和实际水汽压是实际蒸散发的主要影响因素;在非灌溉期,地表净辐射、平均气温、风速和日照时间是实际蒸散发的主要影响因素。实际蒸散发在一定程度上代表了灌区的作物耗水量。因此,灌区作物耗水在灌溉期和非灌溉期的影响作用有一定的差异。(2)在时间上,风速与实际蒸散发为负相关关系且呈显著负相关(P<0.05),其余影响因素与实际蒸散发均为正相关关系且呈显著正相关(P<0.05);在空间上,除风速与实际蒸散发在大部分区域呈负相关关系,其余影响因素都与实际蒸散发在大部分区域呈正相关关系。因此,除风速外,其余影响因素对灌区作物耗水在大部分区域都为正向促进作用。  相似文献   

6.
探究区域作物生育期实际蒸散发及其空间分布特征,为区域节水潜力评价提供依据.研究结合多源数据(种植结构、遥感数据和气象数据等)和遥感陆面蒸散反演方法,得到作物实际蒸散发(ET),并根据作物不同生长阶段的变化特点结合气象资料估算遥感数据缺失时期的ET.①基于遥感数据和SEBAL模型能够准确反演流域空间尺度的日蒸散发量,其生育初期和中期平均误差分别为11.49%和6.22%.5-7月,日蒸散发逐渐增大,且在7月达到峰值,8-10月日蒸散发逐渐降低,9-10月降低趋势较大;②不同作物之间,生育期ET差异明显,甜菜>土豆>玉米>小麦,分别为619.72 mm、558.67 mm、492.51 mm、456.58 mm.作物生育期ET变化范围分别在476.02~795.73 mm、405.41~684.84 mm、345.11~683.35 mm和313.34~604.62 mm之间;③同种作物因灌溉制度不同,其作物生育期ET在空间上表现出差异性.受流域南北降雨不均影响,4种主要作物生育期ET呈现明显的由南向北递减趋势.北部湖泊附近的小麦,因土壤含水量较高,其生育期ET高于周边其他区域.针对内蒙古察汗淖尔流域内作物生育期ET空间分布差异明显,部分区域地下水超采严重等特点,调整流域内种植结构及灌溉制度尤为重要.  相似文献   

7.
汾河灌区参考作物蒸散发量变化趋势及影响要素分析   总被引:1,自引:1,他引:0  
气候变化直接影响着区域的水循环和水资源管理,而研究潜在蒸散发的变化趋势及其影响要素对于灌区的水资源管理具有重要的作用。选择汾河灌区,利用灌区内气象站的长系列数据,分析了灌区内参考作物蒸散发(ET0)的变化趋势及主要影响要素。结果表明,1951―2014年,灌区ET0没有明显的变化趋势,这主要是由于温度升高和相对湿度降低引起的ET0增加与风速下降和日照时间减少引起的ET0下降相当。温度、相对湿度和风速变化主要影响4―6月ET0,而日照时间则主要影响了5―9月的ET0。  相似文献   

8.
蒸散发是黑河流域中游地区农业绿洲水分消耗的主要途径,准确估算该地区的实际蒸散发量并对其变化规律进行分析对于科学指导当地农业灌溉、优化水资源配置等具有重要意义.基于Budyko理论及其改进的傅抱璞经验模型估算黑河流域中游地区2006-2015年的实际蒸散发量,利用Mann-Kendall方法分析实际蒸散发序列的趋势特征和...  相似文献   

9.
为深刻了解玉米浅埋滴灌典型应用区农业气象要素对参考作物腾发量(ET_0)的影响,本研究采用拓展傅里叶幅度敏感性检验(EFAST)法对农业气象因子进行全局敏感性分析,明确不同ET_0的气象成因,为了解获知农业气象变化对作物蒸散发耗水的影响以及合理设计灌溉制度提供参考。结果表明:通辽市2017年、2018年生长季内的气象因素的变化规律具有西辽河流域的典型特征,即春季冷凉干燥多风、夏季湿热多雨,水文年型分别为丰水年、平水年。ET_0与日值最高气温、最低气温、日均风速、日照时数呈正相关,与日均相对湿度呈负相关。该典型区气象因子对ET_0的一阶、全局敏感性指数大小排序为:日均风速(0.220/0.324)最高气温(0.125/0.157)日均相对湿度(0.100/0.139)日照时数(0.091/0.116)最低气温(0.007/0.034),前4个指数为高敏感因子。2017年、2018年生长季ET_0的界限分别为1.5~9.3、1.3~9.6 mm/d,采样气象值相应的ET_0的界限为0.5~9.2 mm/d,作物生长季内高气温、大风速、低湿度、长日照出现频次越高,潜在蒸散耗水量越大,在农业气象的变化的影响下,使得灌溉制度需做出相应调整。  相似文献   

10.
气候变化对黑龙江省生育期内玉米产量的影响   总被引:4,自引:0,他引:4  
以玉米为研究对象,基于黑龙江省长时间的气象站点观测数据,结合标准化降水蒸散发指数(SPEI),研究黑龙江省玉米生长季内降水、气温、区域干湿变化特征及对玉米产量的影响。结果表明:黑龙江省降水变化趋势不显著,但最高气温、平均气温和最低气温变化趋势显著。湿润化的趋势主要集中在黑龙江省西北部和东南部,干旱化趋势主要集中在黑龙江省自东向西大部分地区。玉米的气象产量主要受SPEI3-8影响,气温是影响黑龙江省生育期内玉米产量的主要因素。研究结果可为区域水资源合理规划和优化农业种植结构提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号