首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molchanov AG 《Tree physiology》2000,20(17):1137-1148
Absorption and utilization of photosynthetically active radiation (PAR) were investigated in Scots pine (Pinus sylvestris L.) and birch (Betula pendula Roth.) stands that were 41 years old at the end of the experimental period. Canopy depth of the Scots pine stand was about half that of the birch stand (6.5 versus 11.0 m), but absorption of PAR was similar in the two stands. The Scots pine forest canopy, with a leaf area index of 8.9, absorbed 90% of the incoming PAR (APAR), whereas the birch forest canopy, with a leaf area index of 5.9, absorbed 92% of APAR. During maximum foliage development, the upper Scots pine canopy absorbed more PAR than the upper birch canopy (75 versus 66%). The upper, middle and lower layers of the Scots pine canopy contained 37, 48 and 15% of the total needle surface area, respectively. The corresponding distribution of foliage surface area in the three layers of the birch canopy was 50, 30 and 20%, respectively. Measurements of photosynthetic rate were combined with estimates of leaf area index and stand phytomass to determine rates of primary production on a sunny day, a cloudy day, and on an annual basis. The energy equivalents of short- and long-term carbon gain were used with determinations of APAR to calculate photosynthetic utilization efficiency. Throughout the growing season, photosynthetic utilization efficiency of APAR in the upper canopy layer of the Scots pine forest was almost twice that in the lower canopy layer. In the birch forest, photosynthetic utilization efficiency was greater in the lower canopy layer than in the upper canopy layer. In all cases, utilization efficiency was higher in the birch stand than in the Scots pine stand (52 versus 29 J kJ(-1)). Taking account of respiration of the non-photosynthetic parts of each stand (night respiration of needles or leaves; respiration of branches, trunk and roots), estimated utilization efficiency of APAR for net primary production was 11 J kJ(-1) for Scots pine and 19 J kJ(-1) for birch. Solar conversion ratios, expressed as whole-plant net primary productivity per unit of APAR for the growing season, were 0.81 g MJ(-1) for Scots pine and 0.93 g MJ(-1) for birch.  相似文献   

2.
Coniferous trees growing in the boreal and temperate zones have a clear annual cycle of photosynthetic activity. A recent study demonstrated that the seasonal variation in photosynthetic capacity of Scots pine (Pinus sylvestris L.) could be attributed mainly to the light response curve of photosynthesis. The magnitude of the light response curve varied over the season while its shape remained constant, indicating that the two physiological parameters quantifying the curve-the quantum yield per unit internal carbon dioxide concentration and the corresponding light-saturated rate-remained proportional to each other. We now show, through modeling studies, that the quantum yield (and hence the light-saturated rate) is related to the annual cycle of temperature through a delayed dynamic response. The proposed model was tested by comparing model results with intensive measurements of photosynthesis and driving variables made from April to October in three shoots of Scots pine growing near the northern timberline. Photosynthetic capacity showed considerable acclimation during the growing season. A single model describing photosynthetic capacity as a reversible, first-order delay process driven by temperature explained most of the variation in photosynthetic capacity during the year. The proposed model is simpler but no less accurate than previous models of the annual cycle of photosynthetic capacity.  相似文献   

3.
Three-year-old Scots pine (Pinus sylvestris L.) seedlings were exposed to either ambient or elevated (1.5-1.6 x ambient) ozone concentration ([O3]) for three growing seasons in an open-field fumigation facility where they were irrigated during the growing season with a nutrient solution providing nitrogen (N) at 70 (LN treatment), 100 (control) or 150% (HN treatment) of the optimum supply rate. Treatment effects were most evident during the third year of exposure, when the ambient [O3] + HN treatment enhanced whole-plant biomass, root/shoot dry weight ratio, needle pigment concentrations and the number of chloroplast plastoglobuli in the mesophyll cells in current-year (C) needles, whereas it reduced starch accumulation in C needles and abscission of 2-year-old (C+2) needles. In the control fertilization, 3 years of exposure to elevated [O3] decreased stem-base diameter and increased K concentration and electron density of chloroplast stroma in C needles. Plants in the HN treatment exposed for 3 years to elevated [O3] had significantly lower heights, current-year main shoot length and root/shoot dry mass ratio than control plants, and increased abscission of C+2 needles. In contrast, O3-induced changes in the ultrastructure of mesophyll cells were most evident in seedlings grown for 3 years in the LN treatment. We conclude that, in Scots pine, a relatively O3-tolerant species, chronic O3 exposure leads to cumulative growth reduction, increased needle abscission and changes in carbon allocation that are strongly influenced by plant N availability.  相似文献   

4.
Seasonal changes in the transient expression of Beta-glucuronidase gene (GUS) driven by a constitutive 35S CaMV-promoter in Scots pine (Pinus sylvestris L.) buds were studied by the microprojectile DNA-delivery method. Buds were collected from 5-, 15- and 50-year-old trees. In buds from all age groups the amount of transient expression was dependent on the season; the highest values were found in March, and values were lowest both at the beginning and at the end of the growing season. Pretreatment with growth regulators increased both the amount of transient GUS expression and arginine decarboxylase (ADC) activity in buds indicating an increase in metabolic activity. These results confirm that the genetic transformation technique can be used to study seasonally dependent regulation in mature Scots pine tissues.  相似文献   

5.
G. abietina causes severe dieback in pole-stage stands of Scots pine in Britain. The susceptibility of ll provenances of Scots pine and of three other conifer species was tested by inoculations. Significant differences in susceptibility were found amongst Scots pine provenances, with those originating from a native Scottish pinewood at Loch Maree showing the highest levels of disease. Corsican pine was shown to be the most susceptible species tested although sporulation was greatest on Scots pine. Norway spruce was also shown to be susceptible when inoculated late in the growing season. Infection in lodgepole pine was negligible. High levels of β-phellandrene were tentatively linked with resistance among trees in a single stand of Scots pine.  相似文献   

6.
Stem respiration in 20-year-old Scots pine (Pinus sylvestris L.) trees was examined following 5 years of exposure to ambient conditions (CON), elevated atmospheric carbon dioxide concentration ([CO2]) (ambient + 350 micromol mol(-1), (EC)), elevated temperature (ambient + 2-6 degrees C, (ET)) or a combination of elevated [CO2] and elevated temperature (ECT). Stem respiration varied seasonally regardless of the treatment and displayed a similar trend to temperature, with maximum rates occurring around Day 190 in summer and minimum rates in winter. Respiration normalized to 15 degrees C (R15) was higher in the growing season than in the non-growing season, whereas the temperature coefficient (Q10) was lower in the growing season. Annually averaged R15 was 0.36, 0.43, 0.40 and 0.44 micromol m(-2) s(-1) under CON, EC, ET and ECT conditions, respectively, whereas the corresponding values for total stem respiration were 6.55, 7.69, 7.50 and 7.90 mol m(-2) year(-1). The EC, ET and ECT treatments increased R15 by 18, 11 and 22%, respectively, relative to CON, and increased the modeled annual total stem respiration by 18, 15 and 21%. The increase in modeled annual stem respiration under EC and ECT conditions was caused mainly by higher maintenance respiration (22 and 25%, respectively, whereas the increase in growth respiration was 9 and 12%). Growth respiration was unaltered by ET. The treatments did not significantly affect the respiratory response to stem temperature; the mean Q10 value was 2.04, 2.10, 1.99 and 2.12 in the CON, EC, ET and ECT treatments, respectively. It is suggested that the increase in stem respiration was partly a result of the increased growth rate. We conclude that elevated [CO2] increased the maintenance component of respiration more than the growth component.  相似文献   

7.
In this study, the effect of girdling on the moisture content of small-sized trees for heat energy production was clarified. The moisture content was measured for Scots pine (Pinus sylvestris), Norway spruce (Picea abies), and Downy birch (Betula pubescens) during two growing seasons after girdling. The trees were girdled at breast height for around 30 cm by removing the bark, phloem, and cambium from around the stem. At the beginning of the growing season the mean moisture content of the living Scots pine (P. sylvestris) and Norway spruce (P. abies) was 60%, and for Downy birch (B. pubescens) it was 50%. During the first growing season the effect of girdling on the moisture content was low, but during the second growing season the moisture content decreased significantly. The moisture content of the Norway spruce (P. abies) (23%) and Downy birch (B. pubescens) (33%) was at its lowest point at 14 months after girdling. There were no significant changes in the moisture content of the Scots pine (P. sylvestris) in this study. The results of this study can be used in basic research and in the development of energy wood production.  相似文献   

8.
The formation and maturing of the large tree type Gremmeniella abietina var. abietina fruiting bodies and their sporulation were investigated for 3 years on Scots pine (Pinus sylvestris) in northern Finland. This was done by monthly assessment of shoots in the field and in the laboratory. Infection caused by G. abietina var. abietina was dated on Scots pine by monthly covering with pollination bags and exposing branches during the growing season. Pycnidia appeared between August and September, 1 year after infection, and they started to release conidia between late June and early July, 2 years after infection. Fresh pycnidia and microconidia were formed during the following August and September in the infected shoots. The causal large tree type of G. abietina var. abietina did not produce apothecia on branches within 3 years of infection. Monthly covering and exposing branches showed that infection took place mainly between June and July.  相似文献   

9.
Photosynthetic performance and root respiration were measured for seedlings of Scots pine and Norway spruce under constant conditions in an open gas exchange system in the laboratory. Measurements were carried out after root exposure to ‐20, ‐5 and 0°C and subsequent longtime storage in darkness at +1 or +4°C. Stomatal conductance in relation to net photosynthetic rates was also investigated after the same treatment of seedlings. Root respiration was low for seedlings whose root system had been exposed to ‐20°C, Scots pine showing lower rates than Norway spruce. This was probably an indication of root damage. At least for one provenance of Scots pine, respiration rates were higher for seedlings stored at +1 than at +4°C. Photosynthetic performance was also lowest for seedlings whose roots had been exposed to +20°C compared to higher temperatures, the difference being more clear‐cut for Norway spruce than for Scots pine. Storage at +1 gave slightly higher photosynthetic rates than at +4°C. There was a close relation between stomatal conductance measured on individual needles and photosynthetic performance measured on the whole seedling.  相似文献   

10.
Abstract

Stem respiration was measured in the growing season (June to July) and in the dormant season (October) to detect cambial activity induced by pruning live branches or girdling stems in Scots pine trees (Pinus sylvestris L.) growing in northern Sweden. Immediately after the treatments, the treatment:control ratio of stem respiration increased to between 1.38 and 1.44 in the pruning treatment and between 1.17 and 1.20 in the girdling treatment. The treatment:control ratio of stem respiration then decreased by the end of July, to 0.65 in the pruning treatment and 0.55 in the girdling treatment. In October, the treatment:control ratios were higher: between 0.87 and 0.97 in the pruning treatment and between 0.85 and 0.97 in the girdling treatment. In both pruning and girdling treatments, the time trends of stem respiration rates largely followed those of stem temperatures: the stem respiration rate increased exponentially with an increase in stem temperature. The Q 10 values were 2.83–4.05 and 2.57–2.89 in the pruning treatment and control, and 2.10–2.60 and 1.99–3.19 in the girdling treatment and control, respectively. In most cases, the values of Q 10 in both treatments did not differ significantly from those in the controls.  相似文献   

11.
Three different methods were evaluated for analysing wood formation of Norway spruce [Picea abies (L.) Karst.] and Scots pine (Pinus sylvestris L.) in Finland. During two growing seasons, wood formation dynamics were determined both by wounding the cambium with a needle followed by localisation of the wound-associated tissue modification after the growing season (pinning), and by extracting small increment cores during the growing season (microcoring). Stem radius was additionally monitored with band dendrometers. For Norway spruce, pinning and microcoring yielded similar dates for the onset of wood formation. The timing of wood production during the growing season was also similar for pinning and microcoring. For Scots pine, the onset of wood formation was recorded from microcores almost 2 weeks later than from pinning samples. In Scots pine, microcore measurements also produced somewhat later cessation dates for tracheid formation than the pinning samples. For both tree species, the total number of tracheids formed during the growing season was, however, about the same for pinning and microcoring. Dendrometer results clearly differed from those of pinning and microcoring. In particular, the dendrometers showed an increase of stem radius considerably earlier in spring, when the other methods did not detect wood formation. Thus, pinning and microcoring currently represent the most reliable techniques for detailed monitoring of wood formation.  相似文献   

12.
In this study, the effect of pine mistletoe (Viscum album subsp. austriacum) on basal area increment of Crimean pine and Scots pine was investigated. Dendrochronological data were collected from 223 (71 uninfected and 152 infected) Crimean pines and 195 (77 uninfected and 118 infected) Scots pines located in Kastamonu province of Turkey in 2014. Infected sample trees were classified as light, moderate or severe infection levels. Growth trends and basal area increment loses were compared between uninfected and infected trees for the periods of the last 10, 20 and 30 years. In addition, infection status of forest stands was investigated using temporary sample plots; 27 plots in Crimean pine stands and 26 plots in Scots pine. Results demonstrated that basal area increments were negatively affected by pine mistletoe for both species. Mean basal area increment losses of infected trees for the last decade were determined as 24% for Scots pine and 26% for Crimean pine. Basal area increment losses varied by infection levels (light, moderate and severe) as follows: 25%, 20% and 28% for Scots pines and 20%, 32% and 9% for Crimean pines. Scots pine stands were more severely infected by pine mistletoe than Crimean pine stands. There were negative correlations between number of infected trees and stand density for both species, while positive correlation was detected between the number of infected trees and mean diameter for Scots pine. The results of this study indicate that the pine mistletoe infection has negative effect on radial growth of Scots pine and Crimean pine trees. The results can be an important contribution to the forest management and protection activities in mistletoe-infected stands.  相似文献   

13.
The nature of interference of bracken with Scots pine and Norway spruce seedling establishment was considered in three field experiments. In a seeding experiment, it was found that Scots pine germination was highest on exposed mineral soil and lowest when intact bracken litter and humus were present, suggesting adverse effects of litter and humus on pine regeneration probably due to phytotoxicity. In a second experiment, smothering by bracken caused high mortality of Scots pine seedlings while Norway spruce seedlings were relatively unaffected. Mortality for both Scots pine and Norway spruce seedlings was low when planted in a adjacent Scots pine-bilberry stand with no bracken. Annual shoot growth of Norway spruce was higher in bracken than in Scots pine-bilberry vegetation while no differences in shoot growth between these two vegetation types occurred for Scots pine. In a third experiment, activated carbon was added to the ground under Norway spruce seedlings planted in bracken to adsorb possible phytotoxic compounds released by bracken. The addition of carbon had no effect on seedling mortality or growth rate, indicating that the seedlings were not susceptible to allelochemicals released by bracken. Since large Norway spruce seedlings were relatively unaffected by bracken interference in this study, artificial regeneration with containerized Norway spruce seedlings is suggested to achieve an acceptable conifer tree establishment on clear-cuts invaded by bracken.  相似文献   

14.
We used a combination of eddy flux, canopy, soil and environmental measurements with an integrated biophysical model to analyze the seasonality of component carbon (C) fluxes and their contribution to ecosystem C exchange in a 50-year-old Scots pine forest (Pinus sylvestris L.) in eastern Finland (62 degrees 47' N, 30 degrees 58' E) over three climatically contrasting years (2000-2002). Eddy flux measurements showed that the growing Scots pine forest was a sink for CO2, with annual net C uptakes of 131, 210 and 258 g C m-2> year-1 in 2000, 2001 and 2002, respectively. The integrated process model reproduced the annual course of daily C flux above the forest canopy as measured by the eddy covariance method once the site-specific component parameters were estimated. The model explained 72, 66 and 68% of the variation in daily net C flux in 2000, 2001 and 2002, respectively. Modeled annual C loss by respiration was 565, 629 and 640 g C m-2 year-1, accounting for 77, 77 and 65% of annual gross C uptake, respectively. Carbon fluxes from the forest floor were the dominant contributors to forest ecosystem respiration, with the fractions of annual respiration from the forest floor, foliage and wood being 46-62, 27-44 and 9-10%, respectively. The wide range in daily net C uptake during the growing season was largely attributable to day-to-day fluctuations in incident quantum irradiance. During just a few days in early spring and late autumn, ecosystem net C exchange varied between source and sink as a result of large daily changes in temperature. The forest showed a greater reduction in gross C uptake by photosynthesis than in C loss by respiration during the dry summer of 2000, indicating that interannual variability in ecosystem net C uptake at this site was modified mostly by summer rainfall and vapor pressure deficit.  相似文献   

15.
We studied effects of soil temperature on shoot and root extension growth and biomass and carbohydrate allocation in Scots pine (Pinus sylvestris L.) seedlings at the beginning of the growing season. One-year-old Scots pine seedlings were grown for 9 weeks at soil temperatures of 5, 9, 13 and 17 degrees C and an air temperature of 17 degrees C. Date of bud burst, and the elongation of shoots and roots were monitored. Biomass of current and previous season roots, stem and needles was determined at 3-week intervals. Starch, sucrose, glucose, fructose, sorbitol and inositol concentrations were determined in all plant parts except new roots. The timing of both bud burst and the onset of root elongation were unaffected by soil temperature. At Week 9, height growth was reduced and root extension growth was much less at a soil temperature of 5 degrees C than at higher soil temperatures. Total seedling biomass was lowest in the 5 degrees C soil temperature treatment and highest in the 13 degrees C treatment, but there was no statistically significant difference in total biomass between seedlings grown at 13 and 17 degrees C. In response to increasing soil temperature, below-ground biomass increased markedly, resulting in a slightly higher allocation of biomass to below-ground parts. Among treatments, root length was greatest at a soil temperature of 17 degrees C. The sugar content of old roots was unaffected by soil temperature, but the sugar content of new needles increased with increasing soil temperature. The starch content of all seedling parts was lowest in seedlings grown at 17 degrees C. Otherwise, soil temperature had no effect on seedling starch content.  相似文献   

16.
The aim of this study was to investigate the differences in infections caused by Agrobacterium tumefaciens in a conifer, Scots pine (Pinus sylvestris), and in a non-host deciduous species, silver birch (Betula pendula). All the Agrobacterium tumefaciens strains tested caused crown-gall formation in both tree species, but the infection rates varied remarkably. In Scots pine, the development of galls was rare, and slower than in silver birch. Inoculation into the base of the stem were the most successful in gall induction. Silver-birch galls were large, often surrounding the whole stem, in contrast to Scots pine galls, which were characterized by their small size and neck-like connection with the host plant. In silver birch, no other morphological changes could be seen. In Scots pine, abnormal phenotypes with proliferating short shoots above the galls were observed during the second and third growing season. The results indicate that, of the two non-host tree species, the deciduous one, silver birch, is more susceptible to an A. tumefaciens infection than the conifer, Scots pine. The matrix for A. tumefaciens infection in silver birch differs from that in Scots pine, since the terpene compounds of Scots pine seem either to kill the agrobacteria or to suppress their growth. The differences between the species could be partly caused by their difference in sensitivity to phytohormones. These features reflect evolutionary incompatibility between A. tumefaciens and a gymnosperm.  相似文献   

17.
To determine the effects of shade on biomass, carbon allocation patterns and photosynthetic response, seedlings of loblolly pine (Pinus taeda L.), white pine (Pinus strobus L.), red maple (Acer rubrum L.), and yellow-poplar (Liriodendron tulipifera L.) were grown without shade or in shade treatments providing a 79 or 89% reduction of full sunlight for two growing seasons. The shade treatments resulted in less total biomass for all species, with loblolly pine showing the greatest shade-induced growth reduction. Yellow-poplar was the only species to show increased stem height growth in the 89% shade treatment. The shade treatments increased specific leaf area of all species. Quantum efficiency, dark respiration and light compensation point were generally not affected by the shade treatments. Quantum efficiency, dark respiration, maximum photosynthesis and light compensation point did not change consistently between the first and second growing seasons. We conclude that differences in shade tolerance among these species are not the result of changes in the photosynthetic mechanism in response to shade.  相似文献   

18.
Free amino acid and protein levels, and γ‐glutamyltransferase activity in apical buds and shoots of Scots pine during the growing season. The aim of the study was to obtain the basic information about nitrogen mobilization needed in carrying out studies on the optimal nitrate and ammonium ratios in the metabolism of Scots pine (Pinus sylvestris L.). Considerable seasonal changes in the concentrations of free amino acids and other ninhydrin‐positive low molecular‐weight compounds were observed in the buds and shoots of Scots pine. 43 different amino compounds were identified, the concentrations of arginine, glutamine, glutamic acid, γ‐aminobutyric acid, alanine and aspartic acid being highest at the break of dormancy. The amounts of certain amino compounds decreased during the growing season, those of arginine, ethanolamine and various ammonium compounds in particular. The amount of glutamic and aspartic acids, glycine, alanine and γ‐aminobutyric acid, however, remained relatively constant. The protein concentration and the specific activity of γ‐glutamyltransferase increased towards the end of the growing period. Slight differences were found between the fertilized trees and the control trees.  相似文献   

19.
The aim of this study was to assess the effect and importance of the feeding of the pine top weevil (Pissodes piniphilus) on the germination of Endocronartium pini (syn. Peridermium pini) in Scots pine (Pinus sylvestris), and thus to establish the possibility of the E. pini infection via insect woundings. Germination tests were therefore carried out on current and previous year needle and phloem extracts. Elucidation of the importance of pathogen infection for the insect's feeding preference was also required; for this purpose feeding preference tests were carried out with healthy and infected pine branches using the pine top weevil as a test insect. Weevil feeding increased the germination of E. pini aeciospores on pine extracts. Germination on previous year annual-shoot extracts was lower than that on current year annual-shoot extracts. The advance of the growing season increased this trend, but weevil feeding increased germination on extracts from older annual shoots to the levels found on extracts from current annual shoots. Spores germinated equally well on needle extracts and on phloem extracts. The weevils ate more often on infected branches than on healthy branches. E. pini infections may occur via woundings on branches and weevil feeding may facilitate this.  相似文献   

20.
The effects of the warm and dry weather in the southern upper Rhine plain in the southwest of Germany on the carbon balance of the Scots pine forest at the permanent forest meteorological experimental site Hartheim were analysed over a 14-month period. The investigation of the net ecosystem exchange of carbon dioxide (F NEE) of the Scots pine forest started in the extraordinary hot and dry August 2003. Carbon dioxide fluxes were measured continuously using an eddy covariance system and analysed by use of the EDDYSOFT software package. After determining the temperature dependence of the forest ecosystem respiration and the daytime light dependence of the CO2 exchange, monthly and annual carbon balances of the Scots pine forest were calculated. Mean peak daytime F NEE rates observed in August and September 2003 (−6.5±3.6 μmol m−2 s−1) were drastically lower than in August and September 2004 (−11.8±5.2 μmol m−2 s−1), which did not show pronounced deviations from the mean long-term (1978–2002) climatic conditions. In August 2003, the Hartheim Scots pine forest was a distinct CO2 source (35 g C m−2). The estimates of the annual carbon sink strength of the Scots pine forest ranged between −132 g C m−2 (August 2003–July 2004) and −211 g C m−2 (October 2003–September 2004). The main uncertainty in the determination of the carbon balance of the Hartheim Scots pine forest was introduced by the frequently low turbulence levels, i.e. the friction velocity corrected night-time F NEE fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号