首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gross canopy photosynthesis (P(g)) can be simulated with canopy models or retrieved from turbulent carbon dioxide (CO2) flux measurements above the forest canopy. We compare the two estimates and illustrate our findings with two case studies. We used the three-dimensional canopy model MAESTRA to simulate P(g) of two spruce forests differing in age and structure. Model parameter acquisition and model sensitivity to selected model parameters are described, and modeled results are compared with independent flux estimates. Despite higher photon fluxes at the site, an older German Norway spruce (Picea abies L. (Karst.)) canopy took up 25% less CO2 from the atmosphere than a young Scottish Sitka spruce (Picea sitchensis (Bong.) Carr.) plantation. The average magnitudes of P(g) and the differences between the two canopies were satisfactorily represented by the model. The main reasons for the different uptake rates were a slightly smaller quantum yield and lower absorptance of the Norway spruce stand because of a more clumped canopy structure. The model did not represent the scatter in the turbulent CO2 flux densities, which was of the same order of magnitude as the non-photosynthetically-active-radiation-induced biophysical variability in the simulated P(g). Analysis of residuals identified only small systematic differences between the modeled flux estimates and turbulent flux measurements at high vapor pressure saturation deficits. The merits and limitations of comparative analysis for quality evaluation of both methods are discussed. From this analysis, we recommend use of both parameter sets and model structure as a basis for future applications and model development.  相似文献   

2.
We examined needle-level light response of photosynthesis across a vertical light gradient within 45-55-m-tall western hemlock (Tsuga heterophylla (Raf.) Sarg.) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees growing in a 400-500-year-old mixed species stand. We determined: (1) whether light-saturated photosynthetic rates, light compensation points, and respiration rates varied from the upper to the lower canopy, and (2) if light-saturated photosynthetic rates, light compensation points, and respiration rates varied between Douglas-fir and western hemlock. Over a 25-m gradient from the canopy top to the lower canopy, mean light-saturated photosynthetic rates, light compensation points, and respiration rates declined in overstory Douglas-fir and western hemlock needles, paralleling a 65% decline in the mean daily photosynthetic photon flux density (PPFD). At the canopy top, increasing light-saturated photosynthetic rates relative to lower canopy needles increased carbon uptake at high PPFD. In the lower canopy, reduced respiration rates relative to upper canopy needles increased carbon uptake at low PPFD by reducing the light compensation point. At all canopy positions, western hemlock had lower mean light-saturated photosynthetic rates, light compensation points and respiration rates than Douglas-fir. As a result, western hemlock had higher net photosynthetic rates at low PPFD, but lower net photosynthetic rates at high PPFD compared with Douglas-fir.  相似文献   

3.
In July 1993, we measured leaf conductance, carbon dioxide (CO(2)) assimilation, and transpiration in a Larix gmelinii (Rupr.) Rupr. ex Kuzen forest in eastern Siberia. At the CO(2) concentration of ambient air, maximum values (mean of 10 highest measured values) for CO(2) assimilation, transpiration and leaf conductance for water vapor were 10.1 micro mol m(-2) s(-1), 3.9 mmol m(-2) s(-1) and 365 mmol m(-2) s(-1), respectively. The corresponding mean values, which were much lower than the maximum values, were 2.7 micro mol m(-2) s(-1), 1.0 mmol m(-2) s(-1) and 56 mmol m(-2) s(-1). The mean values were similar to those of Vaccinium species in the herb layer. The large differences between maximum and actual performance were the result of structural and physiological variations within the tree crowns and between trees that reduced maximum assimilation and leaf conductance by about 40 and 60%, respectively. Thus, maximum assimilation and conductance values averaged over the canopy were 6.1 micro mol m(-2) s(-1) and 146 mmol m(-2) s(-1), respectively. Dry air caused stomatal closure, which reduced assimilation by an additional 26%. Low irradiances in the morning and evening had a minor effect (-6%). Daily canopy transpiration was estimated to be 1.45 mm day(-1), which is higher than the value of 0.94 mm day(-1) measured by eddy covariance, but similar to the value of 1.45 mm day(-1) calculated from the energy balance and soil evaporation, and less than the value of 2.1 mm day(-1) measured by xylem flux. Daytime canopy carbon assimilation, expressed on a ground area basis, was 0.217 mol m(-2) day(-1), which is higher than the value measured by eddy flux (0.162 mol m(-2) day(-1) including soil respiration). We discuss the regulation of leaf gas exchange in Larix under the extreme climatic conditions of eastern Siberia (temperature > 35 degrees C and vapor pressure deficit > 5.0 kPa).  相似文献   

4.
  • ? Because all microclimatic variables change with elevation, it is difficult to compare plant performance and especially photosynthetic capacity at different elevations. Indeed, most previous studies investigated photosynthetic capacity of low- and high-elevation plants using constant temperature, humidity and light but varying CO2 partial pressures (P CO 2).
  • ? Using gas exchange measurements, we compared here maximum assimilation rates (A max) at ambient and constant-low-elevation P CO 2for two temperate tree species along an altitudinal gradient (100 to 1600 m) in the Pyrénées mountains.
  • ? Significant differences in A max were observed between the CO2 partial pressure treatments for elevations above 600 m, the between-treatment differences increasing with elevation up to 4 μmol m?2 s?1. We found an increase in A max with increasing elevation at constant-low-elevation P CO 2 but not at ambient P CO 2 for both species. Given a 10% change in P CO 2, a proportionally higher shift in maximum assimilation rate was found for both species.
  • ? Our results showed that high elevation populations had higher photosynthetic capacity and therefore demonstrated that trees coped with extreme environmental conditions by a combination of adaptation (genetic evolution) and of acclimation. Our study also highlighted the importance of using constant CO2 partial pressure to assess plant adaptation at different elevations.
  •   相似文献   

    5.
    Liu S  Teskey RO 《Tree physiology》1995,15(6):351-359
    Branches of field-grown mature loblolly pine (Pinus taeda L.) trees were exposed for 2 years (1992 and 1993) to ambient or elevated CO(2) concentrations (ambient + 165 micro mol mol(-1) or ambient + 330 micro mol mol(-1) CO(2)). Exposure to elevated CO(2) concentrations enhanced rates of net photosynthesis (P(n)) by 53-111% compared to P(n) of foliage exposed to ambient CO(2). At the same CO(2) measurement concentration, the ratio of intercellular to atmospheric CO(2) concentration (C(i)/C(a)) and stomatal conductance to water vapor did not differ among foliage grown in an ambient or enriched CO(2) concentration. Analysis of the relationship between P(n) and C(i) indicated no significant change in carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxygenase during growth in elevated CO(2) concentrations. Based on estimates derived from P(n)/C(i) curves, there were no apparent treatment differences in dark respiration, CO(2) compensation point or P(n) at the mean C(i). In 1992, foliage in the three CO(2) treatments yielded similar estimates of CO(2)-saturated P(n) (P(max)), whereas in 1993, estimates of P(max) were higher for branches grown in elevated CO(2) than in ambient CO(2). We conclude that field-grown loblolly pine trees do not exhibit downward acclimation of leaf-level photosynthesis in their long-term response to elevated CO(2) concentrations.  相似文献   

    6.
    The influence of CO(2) transported in the transpiration stream on measurements of leaf photosynthesis and stem respiration was investigated. Measurements were made on trees in a temperate forest in Scotland and in a tropical rain forest in Cameroon, and on shrubs in the Sahelian zone in Niger. A chamber was designed to measure the CO(2) partial pressure in the gas phase within the woody stems of trees. High CO(2) partial pressures were found, ranging from 3000 to 9200 Pa. Henry's Law was used to estimate the CO(2) concentration of xylem sap, assuming that it was in equilibrium with the measured gas phase partial pressures. The transport of CO(2) in the xylem sap was calculated by multiplying sap CO(2) concentration by transpiration rate. The magnitude of aqueous transport in the studied species ranged from 0.03 to 0.35 &mgr;mol CO(2) m(-2) s(-1), representing 0.5 to 7.1% of typical leaf photosynthetic rates. These values strongly depend on sap pH. To examine the influence of aqueous transport of CO(2) on stem gas exchange, we made simultaneous measurements of stem CO(2) efflux and sap flow on the same stem. After removing the effect of temperature, stem CO(2) efflux was positively related to sap flow. The apparent effect on measurements of stem respiration was up to 0.7 &mgr;mol m(-2) s(-1), representing ~12% of peak stem respiration rates.  相似文献   

    7.
    Specific chloroplast proteins, gas exchange and dry matter production in oak (Quercus robur L.) seedlings and clonal cherry (Prunus avium L. x pseudocerasus Lind.) plants were measured during 19 months of growth in climate-controlled greenhouses at ambient (350 vpm) or elevated (700 vpm) CO(2). In both species, the elevated CO(2) treatment increased the PPFD saturated-rate of photosynthesis and dry matter production. After two months at elevated CO(2), Prunus plants showed significant increases in leaf (55%) and stem (61%) dry mass but not in root dry mass. However, this initial stimulation was not sustained: treatment differences in net assimilation rate (A) and plant dry mass were less after 10 months of growth than after 2 months of growth, suggesting acclimation of A to elevated CO(2) in Prunus. In contrast, after 10 months of growth at elevated CO(2), leaf dry mass of Quercus increased (130%) along with shoot (356%) and root (219%) dry mass, and A was also twice that of plants grown and measured at ambient CO(2). The amounts of Rubisco and the thylakoid-bound protein cytochrome f were higher in Quercus plants grown for 19 months in elevated CO(2) than in control plants, whereas in Prunus there was less Rubisco in plants grown for 19 months in elevated CO(2) than in control plants. Exposure to elevated CO(2) for 10 months resulted in increased mean leaf area in both species and increased abaxial stomatal density in Quercus. There was no change in leaf epidermal cell size in either species in response to the elevated CO(2) treatment. The lack of acclimation of photosynthesis in oak grown at elevated CO(2) is discussed in relation to the production and allocation of dry matter. We propose that differences in carbohydrate utilization underlie the differing long-term CO(2) responses of the two species.  相似文献   

    8.
    Cottonwoods (Populus spp.) are dioecious phreatophytes of hydrological and ecological importance in riparian woodlands throughout the Northern Hemisphere. In streamside zones of southern Alberta, groundwater and soil water typically decline between May and September. To understand how narrowleaf cottonwoods (Populus angustifolia James) are adapted to this seasonal decrease in water availability, we measured photosynthetic gas exchange, leaf reflectance, chlorophyll fluorescence and stable carbon isotope composition (delta(13)C) in trees growing in the Oldman River valley of southern Alberta during the 2006 growth season. Accompanying the seasonal recession in river flow, groundwater table depth (Z(gw)) declined by 1.6 m, but neither mean daily light-saturated net photosynthetic rate (A(max)) nor stomatal conductance (g(s)) was correlated with this change. Both A(max) and g(s) followed a parabolic seasonal pattern, with July 24 maxima of 15.8 micromol m(-2) s(-1) and 559 mmol m(-2) s(-1), respectively. The early summer rise in A(max) was related to an increase in the chlorophyll pool during leaf development. Peak A(max) coincided with the maximum quantum efficiency of Photosystem II (F(v)/F(m)), chlorophyll index (CI) and scaled photochemical reflectance index (sPRI), but occurred one month after maximum volumetric soil water (theta(v)) and minimum Z(gw). In late summer, A(max) decreased by 30-40% from maximum values, in weak correlation with theta(v) (r(2) = 0.50). Groundwater availability limited late-season water stress, so that there was little variation in mean daily transpiration (E). Decreasing leaf nitrogen (% dry mass), CI, F(v)/F(m) and normalized difference vegetation index (NDVI) were also consistent with leaf aging effects. There was a strong correlation between A(max) and g(s) (r(2) = 0.89), so that photosynthetic water-use efficiency (WUE; A(max)/E) decreased logarithmically with increasing vapor pressure deficit in both males (r(2) = 0.75) and females (r(2) = 0.95). The male:female ratio was unequal (2:1, chi(2) = 16.5, P < 0.001) at the study site, but we found no significant between-sex differences in photosynthetic gas exchange, leaf reflectance or chlorophyll fluorescence that might explain the unequal ratio. Females tended to display lower NDVI than males (P = 0.07), but mean WUE did not differ significantly between males and females (2.1 +/- 0.2 versus 2.5 +/- 0.2 mmol mol(-1)), and delta(13)C remained in the -28.8 to -29.3 per thousand range throughout the growth season, in both sexes. These results demonstrate changes in photosynthetic and water-use characteristics that collectively enable vigorous growth throughout the season, despite seasonal changes in water supply and demand.  相似文献   

    9.
    Beech (Fagus sylvatica L.) seedlings were cultivated from seeds sown in pots or directly in the ground in outdoor chambers that were transparent to solar radiation, and provided either ambient air or CO(2)-enriched air (ambient + 350 &mgr;mol mol(-1)). The rooting volume was high in all experiments. In the short-term experiment, potted plants were assigned to a factorial CO(2) x nutrient treatment (optimal nutrient supply and severe nutrient shortage) for 1 year. In the long-term experiment, plants were grown directly in the ground and received an optimal supply of water and nutrients in both CO(2) treatments for 3 years. Nutrient stress caused carboxylation capacity (V(m)) to decrease in the potted seedlings exposed to CO(2)-enriched air during their first growing season. In the long-term experiment with optimal nutrient supply, CO(2)-enriched air did not affect V(m), but caused an upward acclimation of maximum electron transport rate (J(m)). Consequently, there was a 14% increase in the J(m)/V(m) ratio, indicating nitrogen reallocation to maintain an equilibrium between RuBP consumption and RuBP regeneration. Both V(m) and J(m) decreased during the growing season in both CO(2) treatments. Although upward acclimation of J(m) was no longer apparent at the end of the third growing season, plants in CO(2)-enriched air maintained a higher J(m)/V(m) ratio than plants in ambient air, indicating that photosynthetic acclimation always occurred. Second flush leaves appeared during each growing season. When expressed on the basis of foliar nitrogen concentration, their photosynthetic characteristics (V(m) and J(m)) were enhanced compared with other leaves. Because the number of second flush leaves was also increased in the elevated CO(2) treatment, this response should be taken into account when modeling the effects of elevated CO(2) concentration on canopy photosynthesis. Stomatal conductance decreased in response to atmospheric CO(2) enrichment; however, the stomatal response to irradiance followed a single relationship based on two stomatal conductance models.  相似文献   

    10.
    Two-year-old beech (Fagus sylvatica L.) saplings were planted directly in the ground at high density (100 per m(2)), in an experimental design that realistically mimicked field conditions, and grown for two years in air containing CO(2) at either ambient or an elevated (ambient + 350 ppm) concentration. Plant dry mass and leaf area were increased by a two-year exposure to elevated CO(2). The saplings produced physiologically distinct types of sun leaves associated with the first and second growth flushes. Leaves of the second flush had a higher leaf mass per unit area and less chlorophyll per unit area, per unit dry mass and per unit nitrogen than leaves of the first flush. Chlorophyll content expressed per unit nitrogen decreased over time in plants grown in elevated CO(2), which suggests that, in elevated CO(2), less nitrogen was invested in machinery of the photosynthetic light reactions. In early summer, the photosynthetic capacity measured at saturating irradiance and CO(2) was slightly but not significantly higher in saplings grown in elevated CO(2) than in saplings grown in ambient CO(2). However, a decrease in photosynthetic capacity was observed after July in leaves of saplings grown in CO(2)-enriched air. The results demonstrate that photosynthetic acclimation to elevated CO(2) can occur in field-grown saplings in late summer, at the time of growth cessation.  相似文献   

    11.
    In forests worldwide, ~10?40% of bird and mammal species require cavities for nesting or roosting. Although knowledge of tree cavity availability and dynamics has increased during past decades, there is a striking lack of studies from boreal Europe. We studied the density and characteristics of cavities and cavity-bearing trees in three categories of forest in a north-Swedish landscape: clearcuts with tree retention, managed old (>100 years) forest, and unmanaged old forest. Unmanaged old forests had significantly higher mean density of cavities (2.4?±?2.2(SD)?ha?1) than managed old forest (1.1?±?2.1?ha?1). On clearcuts the mean cavity density was 0.4?±?2.3?ha?1. Eurasian aspen (Populus tremula) had a higher probability of containing excavated cavities than other tree species. There was a greater variety of entrance hole shapes and a higher proportion of cavities with larger entrances in old forest than on clearcuts. Although studies of breeding success will be necessary to more accurately assess the impact of forest management on cavity-nesting birds, our results show reduced cavity densities in managed forest. To ensure future provision of cavities, managers should retain existing cavity-bearing trees as well as trees suitable for cavity formation, particularly aspen and dead trees.  相似文献   

    12.
    Few studies have examined the effects of elevated CO2 concentration ([CO2]) on the physiology of intact forest canopies, despite the need to understand how leaf-level responses can be aggregated to assess effects on whole-canopy functioning. We examined the long-term effects of elevated [CO2] (ambient + 200 ppm CO2) on two age classes of needles in the upper and lower canopy of Pinus taeda L. during the second through sixth year of exposure to elevated [CO2] in free-air (free-air CO2 enrichment (FACE)) in North Carolina, USA. Strong photosynthetic enhancement in response to elevated [CO2] (e.g., +60% across age classes and canopy locations) was observed across the years. This stimulation was 33% greater for current-year needles than for 1-year-old needles in the fifth and sixth years of treatment. Although photosynthetic stimulation in response to elevated [CO2] was maintained through the sixth year of exposure, we found evidence of concurrent down-regulation of Rubisco and electron transport capacity in the upper-canopy sunlit leaves. The lower canopy showed no evidence of down-regulation. The upper canopy down-regulated carboxylation capacity (Vcmax) and electron transport capacity (Jmax) by about 17-20% in 1-year-old needles; however, this response was significant across sampling years only for Jmax in 1-year-old needles (P < 0.02). A reduction in leaf photosynthetic capacity in aging conifer needles at the canopy top could have important consequences for canopy carbon balance and global carbon sinks because 1-year-old sunlit needles contribute a major proportion of the annual carbon balance of these conifers. Our finding of a significant interaction between canopy position and CO2 treatment on the biochemical capacity for CO2 assimilation suggests that it is important to take canopy position and needle aging into account because morphologically and physiologically distinct leaves could respond differently to elevated [CO2].  相似文献   

    13.
    Forest floor CO(2) efflux (FF(cer)) is an important component of global carbon budgets, but the spatial variability of forest floor respiration within a forest type is not well documented. Measurements of FF(cer) were initiated in mid-March of 1991 and continued at biweekly to monthly intervals until mid-November. Observations were made at 45 sites along topographic gradients of the Walker Branch Watershed, Tennessee including northeast and southwest facing slopes, valley-bottoms, and exposed ridge-top locations. The FF(cer) measurements were made with a portable gas-exchange system, and all observations were accompanied by soil temperature and soil water content measurements. As expected, FF(cer) exhibited a distinct seasonal trend following patterns of soil temperature, but soil water content and the volume percent of the soil's coarse fraction were also correlated with observed rates. Over the entire measurement period, FF(cer) ranged from a typical minimum of 0.8 micro mol m(-2) s(-1) to an average maximum near 5.7 micro mol m(-2) s(-1). No significant differences in FF(cer) were observed among the ridge-top and slope positions, but FF(cer) in the valley-bottom locations was lower on several occasions. An empirical model of FF(cer) based on these observations is suggested for application to whole-stand estimates of forest carbon sequestration.  相似文献   

    14.
    An understanding of spatial variations in gas exchange parameters in relation to the light environment is crucial for modeling canopy photosynthesis. We measured vertical, horizontal and azimuthal (north and south) variations in photosynthetic capacity (i.e., the maximum rate of carboxylation: Vcmax), nitrogen content (N), leaf mass per area (LMA) and chlorophyll content (Chl) in relation to relative photosynthetic photon flux (rPPF) within a Fagus crenata Blume crown. The horizontal gradient of rPPF was similar in magnitude to the vertical gradient of rPPF from the upper to the lower crown. The rPPF in the north quadrant of the crown was slightly lower than in the south quadrant. Nitrogen content per area (Narea), LMA and Vcmax were strictly proportional to rPPF, irrespective of the vertical direction, horizontal direction and crown azimuth, whereas nitrogen content per dry mass, Chl per area and photosynthetic capacity per dry mass (Vm) were fairly constant. Statistical analyses separating vertical trends from horizontal and azimuthal trends indicated that, although horizontal and vertical light acclimation of leaf properties were similar, there were two significant azimuthal variations: (1) Vcmax was lower in north-facing leaves than in south-facing leaves for a given Narea, indicating low photosynthetic nitrogen-use efficiency (PNUE) of north-facing leaves; and (2) Vcmax was lower in north-facing leaves than in south-facing leaves for a given LMA, indicating low Vm of the north-facing leaves. With respect to the low PNUE of the north-facing leaves, there were no significant azimuthal variations in leaf CO2 conductance from the stomata to the carboxylation site. Biochemical analysis indicated that azimuthal variations in nitrogen allocation to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and in nitrogen allocation between carboxylation (Rubisco and other Calvin cycle enzymes) and light harvesting machinery (Chl pigment-protein complexes) were not the main contributor to the difference in PNUE between north- and south-facing leaves. Lower specific activity of Rubisco may be responsible for the low PNUE of the north-facing leaves. Anatomical analysis indicated that not only high leaf density, which is compatible with a greater fraction of non-photosynthetic tissue, but also thick photosynthetic tissue contributed to the low Vm in the north-facing leaves. These azimuthal variations may need to be considered when modeling canopy photosynthesis based on the Narea-Vcmax or LMA-Vcmax relationship.  相似文献   

    15.
    CO2 concentrations and related environmental factors were measured in an Asian tropical rainforest located in a small valley in Xishuangbanna, SW China, with the aim of investigating the CO2 pooling effect and its mechanism of formation. Pooling of CO2 was observed during the evening (1600?C2200?hours local time); the accumulated CO2 subsequently flowed away after dusk. We consider that along-slope drainage flow, soil CO2 efflux, and temperature inversion contribute to the development of CO2 pooling. A new model is proposed to track the mechanism of the formation and dissipation of CO2 pooling (e.g., drainage flow, compensatory mechanisms). Given its influence on the storage term, we suggest that CO2 pooling and subsequent disappearance should be taken into account when calculating eddy covariance and other micrometeorological measurements of carbon flux for valley sites.  相似文献   

    16.
    To investigate whether sun and shade leaves respond differently to CO2 enrichment, we examined photosynthetic light response of sun and shade leaves in canopy sweetgum (Liquidambar styraciflua L.) trees growing at ambient and elevated (ambient + 200 microliters per liter) atmospheric CO2 in the Brookhaven National Laboratory/Duke University Free Air CO2 Enrichment (FACE) experiment. The sweetgum trees were naturally established in a 15-year-old forest dominated by loblolly pine (Pinus taeda L.). Measurements were made in early June and late August 1997 during the first full year of CO2 fumigation in the Duke Forest FACE experiment. Sun leaves had a 68% greater leaf mass per unit area, 63% more leaf N per unit leaf area, 27% more chlorophyll per unit leaf area and 77% greater light-saturated photosynthetic rates than shade leaves. Elevated CO2 strongly stimulated light-saturated photosynthetic rates of sun and shade leaves in June and August; however, the relative photosynthetic enhancement by elevated CO2 for sun leaves was more than double the relative enhancement of shade leaves. Elevated CO2 stimulated apparent quantum yield by 30%, but there was no interaction between CO2 and leaf position. Daytime leaf-level carbon gain extrapolated from photosynthetic light response curves indicated that sun leaves were enhanced 98% by elevated CO2, whereas shade leaves were enhanced 41%. Elevated CO2 did not significantly affect leaf N per unit area in sun or shade leaves during either measurement period. Thus, the greater CO2 enhancement of light-saturated photosynthesis in sun leaves than in shade leaves was probably a result of a greater amount of nitrogen per unit leaf area in sun leaves. A full understanding of the effects of increasing atmospheric CO2 concentrations on forest ecosystems must take account of the complex nature of the light environment through the canopy and how light interacts with CO2 to affect photosynthesis.  相似文献   

    17.
    Rey A  Jarvis PG 《Tree physiology》1998,18(7):441-450
    To study the long-term response of photosynthesis to elevated atmospheric CO(2) concentration in silver birch (Betula pendula Roth.), 18 trees were grown in the field in open-top chambers supplied with 350 or 700 &mgr;mol mol(-1) CO(2) for four consecutive growing seasons. Maximum photosynthetic rates, stomatal conductance and CO(2) response curves were measured over the fourth growing season with a portable photosynthesis system. The photosynthesis model developed by Farquhar et al. (1980) was fitted to the CO(2) response curves. Chlorophyll, soluble proteins, total nonstructural carbohydrates, nitrogen and Rubisco activity were determined monthly. Elevated CO(2) concentration stimulated photosynthesis by 33% on average over the fourth growing season. However, comparison of maximum photosynthetic rates at the same CO(2) concentration (350 or 700 &mgr;mol mol(-1)) revealed that the photosynthetic capacity of trees grown in an elevated CO(2) concentration was reduced. Analysis of the response curves showed that acclimation to elevated CO(2) concentration involved decreases in carboxylation efficiency and RuBP regeneration capacity. No clear evidence for a redistribution of nitrogen within the leaf was observed. Down-regulation of photosynthesis increased as the growing season progressed and appeared to be related to the source-sink balance of the trees. Analysis of the main leaf components revealed that the reduction in photosynthetic capacity was accompanied by an accumulation of starch in leaves (100%), which was probably responsible for the reduction in Rubisco activity (27%) and to a lesser extent for reductions in other photosynthetic components: chlorophyll (10%), soluble protein (9%), and N concentrations (12%) expressed on an area basis. Despite a 21% reduction in stomatal conductance in response to the elevated CO(2) treatment, stomatal limitation was significantly less in the elevated, than in the ambient, CO(2) treatment. Thus, after four growing seasons exposed to an elevated CO(2) concentration in the field, the trees maintained increased photosynthetic rates, although their photosynthetic capacity was reduced compared with trees grown in ambient CO(2).  相似文献   

    18.
    Ogawa K  Takano Y 《Tree physiology》1997,17(6):415-420
    Carbon dioxide exchange in fruits of Cinnamomum camphora Sieb. was followed over a growing season from July to December 1992. Dark respiration was exponentially related to temperature, with a Q(10) value near 2. Light dependence of photosynthetic CO(2) refixation, i.e., the ratio of gross photosynthesis to dark respiration, was approximated by a hyperbolic function. Seasonal variation in maximum CO(2) refixation capacity ranged between 52 and 174%, reaching a maximum in early August. Daily photosynthetic CO(2) refixation ranged between 17 and 51% over the growth period. We evaluated seasonal variation in translocation rate to the fruit on the basis of the seasonal rates of gross photosynthesis, dark respiration and increase in fruit dry weight, and used the results to develop a simple carbon flow model of fruit development. Seasonal changes in translocation rate paralleled those in fruit growth rate, with two peaks during the periods before and after September. Seed formation took place in the period between the two peaks. The relationship between fruit growth rate and translocation rate was approximated by a linear function. The carbon flow model estimated that, over the reproductive period, the amount of assimilate translocated to each fruit was 377.2 mg dry weight, of which 58.5% was accounted for by weight growth and 41.5% was consumed by net respiration. Carbon dioxide refixation accounted for 22.9% of the carbon balance of the fruit.  相似文献   

    19.
    Biochemical models of photosynthesis suggest that rising temperatures will increase rates of net carbon dioxide assimilation and enhance plant responses to increasing atmospheric concentrations of CO(2). We tested this hypothesis by evaluating acclimation and ontogenetic drift in net photosynthesis in seedlings of five boreal tree species grown at 370 and 580 &mgr;mol mol(-1) CO(2) in combination with day/night temperatures of 18/12, 21/15, 24/18, 27/21, and 30/24 degrees C. Leaf-area-based rates of net photosynthesis increased between 13 and 36% among species in plants grown and measured in elevated CO(2) compared to ambient CO(2). These CO(2)-induced increases in net photosynthesis were greater for slower-growing Picea mariana (Mill.) B.S.P., Pinus banksiana Lamb., and Larix laricina (Du Roi) K. Koch than for faster-growing Populus tremuloides Michx. and Betula papyrifera Marsh., paralleling longer-term growth differences between CO(2) treatments. Measures at common CO(2) concentrations revealed that net photosynthesis was down-regulated in plants grown at elevated CO(2). In situ leaf gas exchange rates varied minimally across temperature treatments and, contrary to predictions, increasing growth temperatures did not enhance the response of net photosynthesis to elevated CO(2) in four of the five species. Overall, the species exhibited declines in specific leaf area and leaf nitrogen concentration, and increases in total nonstructural carbohydrates in response to CO(2) enrichment. Consequently, the elevated CO(2) treatment enhanced rates of net photosynthesis much more when expressed on a leaf area basis (25%) than when expressed on a leaf mass basis (10%). In all species, rates of leaf net CO(2) exchange exhibited modest declines with increasing plant size through ontogeny. Among the conifers, enhancements of photosynthetic rates in elevated CO(2) were sustained through time across a wide range of plant sizes. In contrast, for Populus tremuloides and B. papyrifera, mass-based photosynthetic rates did not differ between CO(2) treatments. Overall, net photosynthetic rates were highly correlated with relative growth rate as it varied among species and treatment combinations through time. We conclude that interspecific variation may be a more important determinant of photosynthetic response to CO(2) than temperature.  相似文献   

    20.
    Two-year-old ponderosa pine seedlings (Pinus ponderosa Laws.) were exposed to episodic O(3) concentrations in open-top chambers for two consecutive growing seasons (June through September of 1990 and 1991). Near the end of the second season of O(3) exposure, gas exchange was measured on needles of surviving flushes at saturating CO(2) and photosynthetic photon flux density (PPFD). Both photosynthetic capacity (A(sat)) and stomatal conductance to water vapor (g(wv)) declined linearly with needle age but differences within a flush were also found. Gas exchange rates of needles from the base of the current-year flush were significantly lower than those of needles from the top of the flush, even though age differences between needles were negligible. Although most measurements were conducted at saturating CO(2), similar patterns of gas exchange were also found at 350 micro mol mol(-1) CO(2), indicating that photosynthesis of needles at the bottom of the flush was more strongly affected by O(3) than that of needles at the top of the flush, even though the potential for O(3) uptake was probably less in needles at the bottom of the flush because of reduced stomatal conductance. Carboxylation efficiency (deltaA/deltaC(i)), the linear slope of the A/C(i) response, was highly correlated with A(sat), varying with needle age, needle position in the flush and O(3) exposure, but the magnitude of the reductions was greater than for A(sat). We conclude that susceptibility to O(3) damage among needles of an individual seedling varies not only with needle age but also with needle position, and that reductions in photosynthetic capacity may not be directly attributable to increased uptake of the pollutant. The data also indicate the need to consider within-flush variation when estimating whole-plant carbon gain and O(3) uptake.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号