首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Man  Rongzhou  Lu  Pengxin  Dang  Qing-Lai 《New Forests》2021,52(2):317-328
New Forests - Understanding tree vulnerability to freezing temperatures will help resource managers to mitigate the effects of climatic variability. To test the effectiveness of tissue dehardening...  相似文献   

2.
The height variation of Scots pine (Pinus sylvestris L.) seedling stock was studied using data from annual inventories of seedling crops. The heights of 240 batches of 2-year-old and 3-year-old transplanted seedling from the years 1973–1986 grown at three nurseries in southern Finland were examined. From each batch, 100 clusters of three successive seedlings were systematically located and measured. The mean heights of the seedling batches ranged from 7.8 to 27.0 cm, with a mean of 14.1 cm. Within batch standard deviations ranged from 1.7 to 7.8 cm, with a mean standard deviation of 3.7 cm. There was considerable variation in the mean heights of seedling batches both within a given year and between years. However, estimated variance components of seedling height showed that year, batch and cluster effect each accounted for about 20 percent of the total variance, while seedling effect explained the remaining 40 percent. The implications of results for single tree and batch grading are discussed.  相似文献   

3.
One‐year‐old container‐grown seedlings were planted in spring on clear cut areas: the Norway spruce (Picea abies) on a moist upland site (Myrtillus‐type) and Scots pine (Pinus sylvestris) on a dryish upland site (Vaccinium‐type). While still in the nursery, half of the seedlings of each species had been inoculated during the previous summer, with a uninucleate Rhizoctonia sp., a root dieback fungus. At outplanting all the seedlings appeared healthy and had a normal apical bud, although the height of the inoculated seedlings was less than that of the uninoculated control seedlings. At the end of the first growing season after planting, the mortality of inoculated Scots pine and Norway spruce seedlings was 25 and 69%, respectively. After two growing seasons the mortality of inoculated seedlings had increased to 38% for Scots pine and 93% for Norway spruce. The mortality of control seedlings after two growing seasons in the forest was 2% for Scots pine and 13% for Norway spruce. After outplanting the annual growth of inoculated seedlings was poor compared with the growth of control seedlings. These results show that, although Rhizoctonia‐affected seedlings are alive and green in the nursery, the disease subsequently affects both their survival and growth in the forest.  相似文献   

4.
PERKS  M. P.; MCKAY  H. M. 《Forestry》1997,70(3):223-232
One-year-old seedlings of Scots pine (Pinus sylvestris L.) offour native seed origins (Loch Maree Islands, Glengarry/GlenMorriston, Glen Affric and Abernethy), a commercial Britishseedlot, and a seedlot from Hedesunda, in middle Sweden, werecompared at monthly intervals from October 1993 to April 1994.Seedling morphology, root condition, root frost hardiness andbud dry matter were determined at each date. There were clear morphological differences among seed origins.Seedlings raised from the commercial seedlot (A70) were largerbut had a poorer root:shoot ratio than the other seed origins.Of the native pines tested, the Loch Maree Islands origin allocateda larger proportion of its photosynthate to fine roots and needlesand smaller proportion to woody structures. Seedlings raised from the commercial British seedlot tendedto have poorer bud lignification than the other origins andalso, in autumn, higher electrolyte leakage rates from its fineroots. During winter, the Swedish origin had the lowest fineroot electrolyte leakage. Seedlings of all origins showed aprogressive increase in fine root hardiness towards mid-winterwith maximum hardiness (–7°C) in January. Dehardeningoccurred over subsequent months reaching –3°C in April.Differences among origins were evident. The Swedish seedlotdeveloped greater frost resistance than the other origins, hardeningbegan earlier in autumn and dehardening began later in spring.The commercial seedlot hardened later than the other originsbut reached a similar level of frost hardiness by January. Ofthe native pines, seedlings of the Loch Maree Islands originwere slowest to develop root hardiness.  相似文献   

5.
Tinus RW  Burr KE  Atzmon N  Riov J 《Tree physiology》2000,20(16):1097-1104
Greenhouse-cultured, container-grown seedlings of Aleppo pine (Pinus halepensis Mill.), radiata pine (Pinus radiata D. Don), and interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) were cold acclimated and deacclimated in growth chambers over 24 weeks. Needle and root cold hardiness and root growth potential (RGP) were measured weekly. Root, needle and stem analyses for soluble sugars and starch were performed biweekly. In all tissues, there was a close correspondence between cold hardiness and the absolute concentration of soluble sugars, as well as between the increase and decrease in concentration of soluble sugars during cold hardening and dehardening, respectively, supporting the theory that soluble sugars function as cryoprotectants in plant tissues. The magnitude of starch concentration did not parallel the magnitude of the cold hardiness attained, and changes in starch concentration were related to production and consumption factors, rather than timing of changes in cold hardiness. The rise and fall of RGP paralleled the rise and fall of total carbohydrate concentration in roots. The behavior of the three species was surprisingly similar, considering the different climates to which they are adapted.  相似文献   

6.
Fluctuations in nitrate reductase activity (NRA), nitrate, nitrite, protein and total nitrogen content of bare-root Scots pine seedlings (Pinus sylvestris L.) raised outdoors were investigated during the first growing season. Nitrate reductase activity was higher in roots than in needles, whereas NO(3) (-) content was higher in needles than in roots and increased in both from June to October. Nitrate reductase activity in roots correlated more closely with NO(3) (-) N in the soil than did NO(3) (-) in the roots. In autumn, there was a closer correlation between foliar NRA and NO(3) (-) in the needles than with NO(3) (-)-N in the soil. Nitrite was not detected in the seedlings during the growing season. Total nitrogen content decreased toward the autumn, whereas protein content initially decreased but increased again in autumn. Acrylic netting placed above the seedlings increased both air and soil temperatures and apparently accelerated the use of nitrate.  相似文献   

7.

Context

Bark beetles are known to be associated with fungi, especially the ophiostomatoid fungi. However, very little is known about role of pine weevils, e.g., Hylobius abietis, as a vector of these fungi in Europe.

Aims

The aims of our study were to demonstrate the effectiveness of H. abietis as a vector of ophiostomatoid fungi in Poland and to identify these fungi in Scots pine seedlings damaged by weevil maturation feeding.

Methods

Insects and damaged Scots pine seedlings were collected from 21 reforestation sites in Poland. The fungi were identified based on morphology, DNA sequence comparisons for two gene regions (ITS, β-tubulin) and phylogenetic analyses.

Results

Sixteen of the ophiostomatoid species were isolated and identified. In all insect populations, Leptographium procerum was the most commonly isolated fungus (84 %). Ophiostoma quercus was also found at a relatively high frequency (16 %). Other ophiostomatoid fungi were found only rarely. Among these rarer fungi, four species, Leptographium lundbergii, Ophiostoma floccosum, Ophiostoma piliferum and Sporothrix inflata, were isolated above 3 %. L. procerum was isolated most frequently and was found in 88 % of the damaged seedlings. S. inflata was isolated from 26 %, while O. quercus occurred in 10 % of the seedlings.

Conclusion

This study confirmed that L. procerum and O. quercus were common associates of H. abietis, while others species were found inconsistently and in low numbers, indicating causal associations. H. abietis also acted as an effective vector transmitting ophiostomatoid species, especially L. procerum and S. inflata, to Scots pine seedlings.  相似文献   

8.
Scots pine (Pinus sylvestris L.) seedlings were grown in containers filled with peat, using two different fertilizers and three different fertilizer regimes. Seedling shoot and root growth and shoot content of nitrogen, potassium and phosphorus were followed in the nursery and after outplanting in the field. Attempts to regulate growth rate by an exponential nutrient supply were not successful, but the root/shoot ratio was influenced by the fertilization regime. Internal nitrogen concentration was stable only for seedlings with low relative growth rate, while seedlings with high nutrient supply in the nursery showed strong nutrient dilution in the shoot after planting.  相似文献   

9.
Mature shrubs can provide microhabitats that are beneficial to tree seedling growth and development. Sugar pine trees (Pinus lambertiana) grow in a narrow zone on the eastern slope of the Carson Range in extreme western Nevada, whereas Jeffrey pine (Pinus jeffreyi) is the dominant tree species in the region, an area extensively disturbed by wild fire. This study compares seedling establishment of sugar pine and Jeffrey pine relative to mature shrubs. In the fall of 2002 (cohort 1) and 2003 (cohort 2), 13,600 seeds of both species were planted in wire mesh enclosures, at three sites, under a variety of microhabitat treatments: under shade and in the open, under two species of shrub cover, and with and without plant litter. Seedlings were monitored for survival through two growing seasons. Even though more sugar pine seedlings emerged, more Jeffrey pine seedlings survived, and Jeffrey pine was the more drought tolerant species, better suited for the xeric climate found in the Carson Range. Litter slightly hindered seedling emergence but had no effect on survival and there was no significant species × litter interaction. Supplemental water facilitated survival in all treatments with highest survival in shade treatments. Sugar pine seedlings showed a significant increase in survival over Jeffrey pine seedlings with the addition of water, particularly in open treatments and more of both species survived under manzanita shrubs with water. The highest seedling mortality occurred when shrub canopy was removed, and seedlings experienced the effect of full sun and competition for soil water. For either species, microhabitat is a significant factor in determining success or failure in rehabilitation efforts after disturbance.  相似文献   

10.
Conidia of Gremmeniella abietina infected and caused disease symptoms in annual shoots of both Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) seedlings. In Norway spruce shoots the infection remained largely latent, with only a few seedlings showing symptoms. Mycelial growth inside the shoots was faster in Scots pine than in Norway spruce and was favoured by low temperature in both hosts. The shoots of Norway spruce seedlings had higher endophyte populations than those of Scots pine, and the populations were decreased by low temperatures. Reductions in the normal epiphytic or endophytic flora by acid mist treatments seemed to favour the development of G. abietina.  相似文献   

11.
Scots pine (Pinus sylvestris L.) seedlings of a provenance from northern Sweden were cultivated hydroponically for 7 weeks in a climate chamber. The nutrient solution contained either 2.5 (low-N) or 50 (high-N) mg N l(-1) with other essential elements added in a fixed optimal proportion to the nitrogen. After 5 and 7 weeks, the seedlings were analyzed for growth, total nitrogen and other essential nutrients, protein and free amino acids. Low-N seedlings grew more slowly and had higher root/shoot ratios than high-N seedlings. With respect to total nitrogen, the effect of the lower nutrient supply was mainly on the nitrogen content of the whole plant and the allocation of nitrogen among tissues, not on tissue nitrogen concentration. This was also the case for potassium, phosphorus, calcium and magnesium. The proportions by weight among these macronutrients in the whole seedlings were similar in both nutrient regimes. The proportion and concentration of sulfur were significantly lower in low-N seedlings than in high-N seedlings, because of a lower net uptake of sulfur than of other macronutrients. The shoot, needles and stem of low-N seedlings had higher concentrations of free amino acids and lower concentrations of protein than the shoot, needles and stem of high-N seedlings. Arginine dominated the pool of free amino acids in the low-N seedlings, whereas glutamine predominated in the high-N seedlings. We conclude that Scots pine seedlings accumulated soluble nitrogen as arginine when net protein synthesis was limited by factors other than nitrogen availability. Nutritional imbalance, as revealed by growth characteristics and a suboptimal proportion and concentration of sulfur in the seedlings, probably affected synthesis of S-amino acids, resulting in the diversion of assimilated nitrogen to arginine instead of protein.  相似文献   

12.
Soil temperature is proposed to affect the photosynthetic rate and carbon allocation in boreal trees through sink limitation. The aim of this study was to investigate the effect of temperature on CO(2) exchange, biomass partitioning and ectomycorrhizal (ECM) fungi of boreal tree species. We measured carbon allocation, above- and below-ground CO(2) exchange and the species composition of associated ECM fungi in the rhizosphere of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies K.) and silver birch (Betula pendula Roth) seedlings grown in soil maintained at 7-12, 12-15 and 16-22 °C. We found increased root biomass and photosynthetic rate at higher soil temperatures, but simultaneously with photosynthesis rate, higher temperature generally increased soil respiration as well as shoot, and root and rhizosphere respiration. The net CO(2) exchange and seedling biomass did not increase significantly with increasing temperature due to a concomitant increase in carbon assimilation and respiration rates. The 2-month-long growth period in different soil temperatures did not alter the ECM fungi species composition and the below-ground carbon sink strength did not seem to be directly related to ECM biomass and species composition in any of the tree species. Ectomycorrhizal species composition and number of mycorrhiza did not explain the CO(2) exchange results at different temperatures.  相似文献   

13.
Survival of pine seedlings was tested in greenhouses where substrates were infected with Rbizoctonia, Fusarium or Rbizoctonia with Fusarium. To reduce the pathogen menace biological (sterile sawdust, Tricboderma or sawdust with Tricboderma) or chemical (seed protection) treatments were performed. Incorporation of sawdust or sawdust with Tricboderma 20 days before sowing increased the survival of seedlings and it was comparable to protection with Nemispor for Fusarium-menace, with Funaben T for Rbizoctonia menace and Oxafun T or Karbochin for both pathogens.  相似文献   

14.
We examined effects of nutrient availability and changing root zone temperature (RZT) on growth, gas exchange and plasma membrane H(+)-ATPase (PM-ATPase) activity of roots of 1-year-old Scots pine (Pinus sylvestris L.) seedlings during spring flushing. The 6-week growth-chamber experiment was carried out in hydroponic cultures that supplied the seedlings with low (0.5 mM N) or high (3 mM N) nutrient concentration and two rates of increase in RZT were simulated: slow warming (SW-treatment) and fast warming (FW-treatment). Air temperature, humidity, and light conditions were similar in all treatments. Growth of roots and shoots was retarded at low RZT, and fresh mass increment of roots was closely correlated with RZT sum. High nutrient availability increased nitrogen concentrations of needles and stems, but only at RZTs >13 degrees C. Low RZT and low availability of nutrients suppressed gas exchange of the seedlings. Real PM-ATPase activity was highly dependent on RZT. At high RZTs, real PM-ATPase activity was affected by nutrient availability but this effect was related to root growth. We conclude that, under conditions of high nutrient availability, Scots pine seedlings can compensate for the suppressive effects of long-term exposure to low RZT by rapidly accelerating growth, gas exchange and root metabolism, but only when RZT has increased above a threshold value, which was 13 degrees C in this study.  相似文献   

15.
Sarjala T 《Tree physiology》1993,12(1):93-100
The influence of ammonium on glutamine synthetase activity (GS, EC 6.3.1.2) was studied in three species of ectomycorrhizal fungi, Paxillus involutus (Batsch:Fr) Fr, Piloderma croceum Erikss. and Hjortst. and Suillus variegatus (Fr) O Kuntze growing in pure culture, as well as in the roots and needles of nursery-grown, non-mycorrhizal and mycorrhizal Scots pine (Pinus sylvestris L.) seedlings inoculated with Paxillus involutus or Piloderma croceum as the symbiont. In response to increasing concentrations of ammonium in the nutrient solution, GS activity (expressed on a dry weight basis) increased slightly in Suillus variegatus but not in the other fungi. Glutamine synthetase activity increased in the roots and decreased in the needles of non-mycorrhizal seedlings as the ammonium concentration in the nutrient solution was increased from 0 to 1 mM, but no response was noted with further increases from 1 to 12 mM. Interspecies differences in GS activity were noted among the fungi growing in pure culture, but no significant interspecies differences were observed among the same fungi in the mycorrhizal state.  相似文献   

16.
Ohlund J  Näsholm T 《Tree physiology》2004,24(12):1397-1402
Plants possess regulatory mechanisms that enhance nitrogen (N) uptake under conditions of spatial and temporal variation in N availability. Study of regulatory mechanisms has focused almost exclusively on the uptake of inorganic N sources (i.e., ammonium (NH4+), nitrate (NO3-). Several lines of evidence, however, suggest that amino acids may constitute a potential source of N for a number of plant species, including conifers. In the present study, we investigated the uptake of amino acids and inorganic N in Scots pine (Pinus sylvestris L.) seedlings grown at different N concentrations. We compared the uptake rate of the individual N sources using U-[13C2], [15N]-glycine, U-[13C6], [15N4]-arginine, 15NH4, or 15NO3, and tested the short-term effect of N supply on the uptake rate of glycine, arginine and in field-grown Scots pine seedlings. Our data indicate that Scots pine seedlings can absorb substantial amounts of N in the form of intact arginine and glycine molecules. The data also suggest that Scots pine seedlings down-regulate their uptake of NH4+-N and arginine-N, but not of glycine-N in response to increased endogenous N concentrations.  相似文献   

17.
  • ? We investigated the influence of Thelephora terrestris, an ectomycorrhizal fungus, on the concentration of nitrogen in needles of Pinus sylvestris L. seedlings and their mycorrhizal structure within four seasons of growth.
  • ? Seedlings were grown in four treatments: (I) inoculated + 0.030 g N, (II) inoculated + 0.045 g N, (III non-inoculated + 0.030 g N, (IV) non-inoculated + 0.045 g N under laboratory conditions and later planted in post-agricultural land.
  • ? For inoculated treatments, statistically significant differences in N concentration of needles were observed for two- and four-year-old seedlings. The number of ectomycorrhizae and concentration of N in needles were negatively correlated. After four seasons of growth the greatest numbers of ectomycorrhizae were present on seedlings from treatment II, and the smallest on seedlings from treatment IV.
  • ? Two-year-old seedlings had been colonized by at least six different fungal taxa, i.e. Cenococcum geophilum, Hebeloma crustuliniforme, Rhizopogon sp., Suillus bovinus, Thelephora terrestris and a non-identified one. Treatments I and II were dominated by the ectomycorrhizae of T. terrestris and their number was significantly greater than in treatments III or TV. On four-year-old seedlings ectomycorrhizae of T. terrestris were dominated in all treatments, while ectomycorrhizae of Hebeloma sp. were not found.
  •   相似文献   

    18.
    In vivo chlorophyll fluorescence kinetics was observed in naturally regenerated and planted Scots pine (Pinus sylvestris L.) seedlings growing at two adjacent sites in northern Sweden. Some seedlings were shaded from direct solar radiation and some were protected from frost at night. Air temperature and solar radiation were monitored. In vivo chlorophyll fluorescence kinetics of current-year needles was measured at both room temperature and 77 K. On clear days during August, variable fluorescence of photosystem II of needles from exposed, naturally regenerated seedlings was reduced by night frosts, whereas frost caused little change in fluorescence of needles from shaded seedlings. Overnight frost-protection reduced the inhibition of photosystem II by direct sunlight. Recovery from photoinhibitory damage occurred on cloudy days. In September, the decline of variable fluorescence of photosystem II was more pronounced in unshaded than in shaded seedlings, and coincided with frosts at night. In addition, the reduction in variable fluorescence was larger for planted seedlings than for naturally regenerated seedlings. It is suggested that the inhibition of photosystem II activity was caused by an interaction between low temperatures and light. Natural night frosts are proposed to increase the susceptibility to photoinhibition in the following day(s).  相似文献   

    19.
    The time constant of the dehardening of one‐year‐old Scots pine (Pinus sylvestris L.) seedlings was studied in three experiments started at different times of the year. The seedlings were transferred from outside to the different controlled conditions in January (Exp. 1), March (Exp. 2) and April (Exp. 3). Changes in the frost resistance of the seedlings were followed on the basis of the temperature response of the specific impedance difference in the shoot. The time constant for dehardening at a temperature of 7.5°C was found to be about 12 days in Exp. 1, about 8 days in Exp. 2, and about 5 days in Exp. 3. the terminal bud burst when the frost resistance of the shoot had risen to about ‐10°C.  相似文献   

    20.
    Three-year-old Scots pine (Pinus sylvestris L.) seedlings were exposed to either ambient or elevated (1.5-1.6 x ambient) ozone concentration ([O3]) for three growing seasons in an open-field fumigation facility where they were irrigated during the growing season with a nutrient solution providing nitrogen (N) at 70 (LN treatment), 100 (control) or 150% (HN treatment) of the optimum supply rate. Treatment effects were most evident during the third year of exposure, when the ambient [O3] + HN treatment enhanced whole-plant biomass, root/shoot dry weight ratio, needle pigment concentrations and the number of chloroplast plastoglobuli in the mesophyll cells in current-year (C) needles, whereas it reduced starch accumulation in C needles and abscission of 2-year-old (C+2) needles. In the control fertilization, 3 years of exposure to elevated [O3] decreased stem-base diameter and increased K concentration and electron density of chloroplast stroma in C needles. Plants in the HN treatment exposed for 3 years to elevated [O3] had significantly lower heights, current-year main shoot length and root/shoot dry mass ratio than control plants, and increased abscission of C+2 needles. In contrast, O3-induced changes in the ultrastructure of mesophyll cells were most evident in seedlings grown for 3 years in the LN treatment. We conclude that, in Scots pine, a relatively O3-tolerant species, chronic O3 exposure leads to cumulative growth reduction, increased needle abscission and changes in carbon allocation that are strongly influenced by plant N availability.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号