首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermoelectric (Peltier) heat pumps are capable of refrigerating solid or fluid objects, and unlike conventional vapor compressor systems, they can be miniaturized without loss of efficiency. More efficient thermoelectric materials need to be identified, especially for low-temperature applications in electronics and devices. The material CsBi(4)Te(6) has been synthesized and its properties have been studied. When doped appropriately, it exhibits a high thermoelectric figure of merit below room temperature (ZT(max) approximately 0.8 at 225 kelvin). At cryogenic temperatures, the thermoelectric properties of CsBi(4)Te(6) appear to match or exceed those of Bi(2-x)Sb(x)Te(3-y)Se(y) alloys.  相似文献   

2.
The efficiency of thermoelectric energy converters is limited by the material thermoelectric figure of merit (zT). The recent advances in zT based on nanostructures limiting the phonon heat conduction is nearing a fundamental limit: The thermal conductivity cannot be reduced below the amorphous limit. We explored enhancing the Seebeck coefficient through a distortion of the electronic density of states and report a successful implementation through the use of the thallium impurity levels in lead telluride (PbTe). Such band structure engineering results in a doubling of zT in p-type PbTe to above 1.5 at 773 kelvin. Use of this new physical principle in conjunction with nanostructuring to lower the thermal conductivity could further enhance zT and enable more widespread use of thermoelectric systems.  相似文献   

3.
Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials   总被引:2,自引:0,他引:2  
A class of thermoelectric materials has been synthesized with a thermoelectric figure of merit ZT (where T is temperature and Z is a function of thermopower, electrical resistivity, and thermal conductivity) near 1 at 800 kelvin. Although these materials have not been optimized, this value is comparable to the best ZT values obtained for any previously studied thermoelectric material. Calculations indicate that the optimized material should have ZT values of 1.4. These ternary semiconductors have the general formula RM4X12 (where R is lanthanum, cerium, praseodymium, neodymium, or europium; M is iron, ruthenium, or osmium; and X is phosphorus, arsenic, or antimony) and represent a new approach to creating improved thermoelectric materials. Several alloys in the composition range CeFe4-xCoxSb12 or LaFe4-xCoxSb12 (0 < x < 4) have large values of ZT.  相似文献   

4.
We used three-dimensional inverse scattering of core-reflected shear waves for large-scale, high-resolution exploration of Earth's deep interior (D') and detected multiple, piecewise continuous interfaces in the lowermost layer (D') beneath Central and North America. With thermodynamic properties of phase transitions in mantle silicates, we interpret the images and estimate in situ temperatures. A widespread wave-speed increase at 150 to 300 kilometers above the coremantle boundary is consistent with a transition from perovskite to postperovskite. Internal D' stratification may be due to multiple phase-boundary crossings, and a deep wave-speed reduction may mark the base of a postperovskite lens about 2300 kilometers wide and 250 kilometers thick. The core-mantle boundary temperature is estimated at 3950 +/- 200 kelvin. Beneath Central America, a site of deep subduction, the D' is relatively cold (DeltaT = 700 +/- 100 kelvin). Accounting for a factor-of-two uncertainty in thermal conductivity, core heat flux is 80 to 160 milliwatts per square meter (mW m(-2)) into the coldest D' region and 35 to 70 mW m(-2) away from it. Combined with estimates from the central Pacific, this suggests a global average of 50 to 100 mW m(-2) and a total heat loss of 7.5 to 15 terawatts.  相似文献   

5.
An applied electric field can reversibly change the temperature of an electrocaloric material under adiabatic conditions, and the effect is strongest near phase transitions. We demonstrate a giant electrocaloric effect (0.48 kelvin per volt) in 350-nanometer PbZr(0.95)Ti(0.05)O3 films near the ferroelectric Curie temperature of 222 degrees C. A large electrocaloric effect may find application in electrical refrigeration.  相似文献   

6.
Past temperatures directly from the greenland ice sheet   总被引:3,自引:0,他引:3  
A Monte Carlo inverse method has been used on the temperature profiles measured down through the Greenland Ice Core Project (GRIP) borehole, at the summit of the Greenland Ice Sheet, and the Dye 3 borehole 865 kilometers farther south. The result is a 50, 000-year-long temperature history at GRIP and a 7000-year history at Dye 3. The Last Glacial Maximum, the Climatic Optimum, the Medieval Warmth, the Little Ice Age, and a warm period at 1930 A.D. are resolved from the GRIP reconstruction with the amplitudes -23 kelvin, +2.5 kelvin, +1 kelvin, -1 kelvin, and +0.5 kelvin, respectively. The Dye 3 temperature is similar to the GRIP history but has an amplitude 1.5 times larger, indicating higher climatic variability there. The calculated terrestrial heat flow density from the GRIP inversion is 51.3 milliwatts per square meter.  相似文献   

7.
The zero-field muon spin relaxation technique has been used in the direct observation of spontaneous magnetic order below a Curie temperature (T(c)) of approximately 16.1 kelvin in the fullerene charge-transfer salt (tetrakisdimethylaminoethylene)C(60) [(TDAE)C(60)]. Coherent ordering of the electronic magnetic moments leads to a local field of 68(1) gauss at the muon site at 3.2 kelvin (parentheses indicate the error in the last digit). Substantial spatially inhomogeneous effects are manifested in the distribution of the local fields, whose width amounts to 48(2) gauss at the same temperature. The temperature evolution of the internal magnetic field below the freezing temperature mirrors that of the saturation magnetization, closely following the behavior expected for collective spin wave (magnon) excitations. The transition to a ferromagnetic state with a T(c) higher than that of any other organic material is now authenticated.  相似文献   

8.
By trapping molecules between two gold electrodes with a temperature difference across them, the junction Seebeck coefficients of 1,4-benzenedithiol (BDT), 4,4'-dibenzenedithiol, and 4,4'-tribenzenedithiol in contact with gold were measured at room temperature to be +8.7 +/- 2.1 microvolts per kelvin (muV/K), +12.9 +/- 2.2 muV/K, and +14.2 +/- 3.2 muV/K, respectively (where the error is the full width half maximum of the statistical distributions). The positive sign unambiguously indicates p-type (hole) conduction in these heterojunctions, whereas the Au Fermi level position for Au-BDT-Au junctions was identified to be 1.2 eV above the highest occupied molecular orbital level of BDT. The ability to study thermoelectricity in molecular junctions provides the opportunity to address these fundamental unanswered questions about their electronic structure and to begin exploring molecular thermoelectric energy conversion.  相似文献   

9.
The recently discovered homologous series HgBa(2)Can-1 Cun O2n+2+delta possesses remarkable properties. A superconducting transition temperature, T(c), as high as 133 kelvin has been measured in a multiphase Hg-Ba-Ca-Cu-O sample and found to be attributable to the Hg-1223 compound. Temperature-dependent electrical resistivity measurements under pressure on a (> 95%) pure Hg-1223 phase are reported. These data show that T(c) increases steadily with pressure at a rate of about 1 kelvin per gigapascal up to 15 gigapascals, then more slowly and reaches a T(c) = 150 kelvin, with the onset of the transition at 157 kelvin, for 23.5 gigapascals. This large pressure variation (as compared to the small effects observed in similar compounds with the optimal T(c)) strongly suggests that higher critical temperatures could be obtained at atmospheric pressure.  相似文献   

10.
Gupta A  Sun JZ  Tsuei CC 《Science (New York, N.Y.)》1994,265(5175):1075-1077
The superconducting transport characteristics of HgBa(2) CaCu(2)O(6+delta) (Hg-1212) films and grain-boundary junctions grown on (100)-oriented SrTiO(3) bicrystal substrates have been investigated. The films exhibit a zero-resistance temperature of approximately 120 kelvin and sustain large critical current densities, with values as high as 10(6) amperes per square centimeter at around 100 kelvin. On the other hand, the grain boundaries behave as weak links, with substantially lower critical currents, as is observed for other cuprate superconductors. A reduction of three orders of magnitude in critical current was observed for transport across a 36.8 degrees grain boundary. The current-voltage characteristics of bridges across such a grain boundary show weak-link behavior qualitatively resembling that of a resistively shunted junction. Single-level direct-current superconducting quantum interference devices (SQUIDs) have been fabricated with such bicrystal junctions. These SQUIDs show clear periodic voltage modulations when subjected to applied magnetic fields. The SQUIDs operate at temperatures as high as 111.8 kelvin, which makes them attractive for operation in portable sensors and devices that utilize nonconventional cooling methods.  相似文献   

11.
The energy costs associated with large-scale industrial separation of light hydrocarbons by cryogenic distillation could potentially be lowered through development of selective solid adsorbents that operate at higher temperatures. Here, the metal-organic framework Fe(2)(dobdc) (dobdc(4-) : 2,5-dioxido-1,4-benzenedicarboxylate) is demonstrated to exhibit excellent performance characteristics for separation of ethylene/ethane and propylene/propane mixtures at 318 kelvin. Breakthrough data obtained for these mixtures provide experimental validation of simulations, which in turn predict high selectivities and capacities of this material for the fractionation of methane/ethane/ethylene/acetylene mixtures, removal of acetylene impurities from ethylene, and membrane-based olefin/paraffin separations. Neutron powder diffraction data confirm a side-on coordination of acetylene, ethylene, and propylene at the iron(II) centers, while also providing solid-state structural characterization of the much weaker interactions of ethane and propane with the metal.  相似文献   

12.
In a superconductor, the ratio of the carrier density, n, to its effective mass, m*, is a fundamental property directly reflecting the length scale of the superfluid flow, the London penetration depth, λ(L). In two-dimensional systems, this ratio n/m* (~1/λ(L)(2)) determines the effective Fermi temperature, T(F). We report a sharp peak in the x-dependence of λ(L) at zero temperature in clean samples of BaFe(2)(As(1)(-x)P(x))(2) at the optimum composition x = 0.30, where the superconducting transition temperature T(c) reaches a maximum of 30 kelvin. This structure may arise from quantum fluctuations associated with a quantum critical point. The ratio of T(c)/T(F) at x = 0.30 is enhanced, implying a possible crossover toward the Bose-Einstein condensate limit driven by quantum criticality.  相似文献   

13.
Experiments on melting and phase transformations on iron in a laser-heated, diamond-anvil cell to a pressure of 150 gigapascals (approximately 1.5 million atmospheres) show that iron melts at the central core pressure of 363.85 gigapascals at 6350 +/- 350 kelvin. The central core temperature corresponding to the upper temperature of iron melting is 6150 kelvin. The pressure dependence of iron melting temperature is such that a simple model can be used to explain the inner solid core and the outer liquid core. The inner core is nearly isothermal (6150 kelvin at the center to 6130 kelvin at the inner core-outer core boundary), is made of hexagonal closest-packed iron, and is about 1 percent solid (MgSiO(3) + MgO). By the inclusion of less than 2 percent of solid impurities with iron, the outer core densities along a thermal gradient (6130 kelvin at the base of the outer core and 4000 kelvin at the top) can be matched with the average seismic densities of the core.  相似文献   

14.
Thousandfold change in resistivity in magnetoresistive la-ca-mn-o films   总被引:1,自引:0,他引:1  
A negative isotropic magnetoresistance effect more than three orders of magnitude larger than the typical giant magnetoresistance of some superlattice films has been observed in thin oxide films of perovskite-like La(0.67)Ca(0.33)MnOx. Epitaxial films that are grown on LaAIO(3) substrates by laser ablation and suitably heat treated exhibit magnetoresistance values as high as 127,000 percent near 77 kelvin and approximately 1300 percent near room temperature. Such a phenomenon could be useful for various magnetic and electric device applications if the observed effects of material processing are optimized. Possible mechanisms for the observed effect are discussed.  相似文献   

15.
Magnetization and neutron diffraction measurements on polycrystalline BaCuO2+x revealed a combination of magnetic behaviors. The Cu(6) ring clusters and Cu(18) sphere clusters in this compound had ferromagnetic ground states with large spins 3 and 9, respectively. The Cu(6) rings ordered antiferromagnetically below the Néel temperature T(N) = 15 +/- 0.5 kelvin, whereas the Cu(18) spheres remained paramagnetic down to 2 kelvin. The ordered moment below T(N) was 0.89(5) Bohr magnetons per Cu in the Cu(6) rings, demonstrating that quantum fluctuation effects are small in these atomic clusters. The Cu(18) clusters are predicted to exhibit ferromagnetic intercluster order below about 1 kelvin.  相似文献   

16.
The neutral muonic helium atom may be regarded as the heaviest isotope of the hydrogen atom, with a mass of ~4.1 atomic mass units ((4.1)H), because the negative muon almost perfectly screens one proton charge. We report the reaction rate of (4.1)H with (1)H(2) to produce (4.1)H(1)H + (1)H at 295 to 500 kelvin. The experimental rate constants are compared with the predictions of accurate quantum-mechanical dynamics calculations carried out on an accurate Born-Huang potential energy surface and with previously measured rate constants of (0.11)H (where (0.11)H is shorthand for muonium). Kinetic isotope effects can be compared for the unprecedentedly large mass ratio of 36. The agreement with accurate quantum dynamics is quantitative at 500 kelvin, and variational transition-state theory is used to interpret the extremely low (large inverse) kinetic isotope effects in the 10(-4) to 10(-2) range.  相似文献   

17.
Atomic layer deposition and magnetron sputter deposition were used to synthesize thin-film multilayers of W/Al(2)O(3). With individual layers only a few nanometers thick, the high interface density produced a strong impediment to heat transfer, giving rise to a thermal conductivity of approximately 0.6 watts per meter per kelvin. This result suggests that high densities of interfaces between dissimilar materials may provide a route for the production of thermal barriers with ultra-low thermal conductivity.  相似文献   

18.
An unresolved issue concerning cuprate superconductors is whether the distribution of carriers in the CuO2 plane is uniform or inhomogeneous. Because the carriers comprise a small fraction of the total charge density and may be rapidly fluctuating, modulations are difficult to detect directly. We demonstrate that in anomalous x-ray scattering at the oxygen K edge of the cuprates, the contribution of carriers to the scattering amplitude is selectively magnified 82 times. This enhances diffraction from the doped holes by more than 10(3), permitting direct structural analysis of the superconducting ground state. Scattering from thin films of La2CuO4+delta (superconducting transition temperature = 39 K) at temperature = 50 +/- 5 kelvin on the reciprocal space intervals (0,0,0.21) --> (0,0,1.21) and (0,0,0.6) --> (0.3,0,0.6) shows a rounding of the carrier density near the substrate suggestive of a depletion zone or similar effect. The structure factor for off-specular scattering was less than 3 x 10(-7) electrons, suggesting an absence of in-plane hole ordering in this material.  相似文献   

19.
Solar prominences are cool 10(4) kelvin plasma clouds supported in the surrounding 10(6) kelvin coronal plasma by as-yet-undetermined mechanisms. Observations from Hinode show fine-scale threadlike structures oscillating in the plane of the sky with periods of several minutes. We suggest that these represent Alfvén waves propagating on coronal magnetic field lines and that these may play a role in heating the corona.  相似文献   

20.
A quantum-cascade long-wavelength infrared laser based on superlattice active regions has been demonstrated. In this source, electrons injected by tunneling emit photons corresponding to the energy gap (minigap) between two superlattice conduction bands (minibands). A distinctive design feature is the high oscillator strength of the optical transition. Pulsed operation at a wavelength of about 8 micrometers with peak powers ranging from approximately 0.80 watt at 80 kelvin to 0.2 watt at 200 kelvin has been demonstrated in a superlattice with 1-nanometer-thick AlInAs barriers and 4.3-nanometer-thick GaInAs quantum wells grown by molecular beam epitaxy. These results demonstrate the potential of strongly coupled superlattices as infrared laser materials for high-power sources in which the wavelength can be tailored by design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号