首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 437 毫秒
1.
介绍了一种混合动力摩托车制动能量回收控制系统。利用车辆的轮毂驱动电机在制动时产生阻(制动)力矩,将车辆的动能转换为电能并向蓄电池充电,控制器根据制动要求调节制动力矩(充电电流),在满足制动安全的前提下实现能量的回收。在混合动力摩托车上的试验表明,能量回收获得较为显著的效果,能量回收率最高可达25.1%,该技术能广泛应用于电动车和混合动力摩托车。  相似文献   

2.
基于WG6120HD串联式混合动力城市客车特点,通过对电动车辆制动能量回收的不同实现方式,综合效率和最大制动能力因素,提出了适用于串联式混合动力城市客车的再生制动能量回收制动踏板控制模式。道路试验表明,该控制模式避免了车辆滑行的速度损失,并且保证了最大制动力。  相似文献   

3.
在交通部某试验场长直线道路上,对一辆混合动力客车进行制动能量回收系统关闭和开启、变速器空挡和挂挡以及65%载荷和满载条件下滑行比对试验,以研究制动能量回收系统、变速器挡位以及载荷对车辆滑行阻力造成的影响。结果表明,制动能量回收过程中产生的再生制动力与车速近似成二次函数关系,对车辆滑行阻力影响最大;挂挡条件下客车滑行阻力大小与车速成正比,滑行阻力值比空挡条件下约高2 200 N;满载滑行阻力值比65%载荷高约5%~15%,对滑行阻力值影响相对较小。进行道路滑行试验时,混合动力客车的制动能量回收系统关闭,变速器置空挡。  相似文献   

4.
提出一种基于ECE法规和理想制动力分配曲线的制动能量回收控制策略。利用MATLAB/Simulink搭建控制策略模型,并在AVL Cruise中进行联合仿真。通过NEDC工况仿真,证明所提出的制动能量回收控制策略能有效提高混合动力汽车的续航里程。最后通过实车试验,进一步验证了该控制策略的有效性。  相似文献   

5.
制动能量回收系统能够有效地提高电动汽车的续驶里程。以前轴驱动电动汽车为研究对象,根据制动能量回收系统的结构和原理,对其能量流动展开分析,得到影响制电动汽车制动能量回收的关键因素,并重点分析了常见的几种能量回收控制策略的优缺点。  相似文献   

6.
文章在分析城市公交车运行工况的基础上,说明了城市公交车能量回收系统的必要性。分析了三种制动能量回收方式的结构原理,对三种制动能量回收系统在城市公交车上的应用进行了分析比较。  相似文献   

7.
为有效地回收电动汽车的制动能量,分析了再生制动力的约束条件和电机再生制动力矩的最大限值;根据电机可提供再生制动力矩与需求的制动力矩的关系,提出了满足四轮驱动电动汽车的制动能量回收优化控制策略,利用Matlab/Simulink和Advisor软件平台进行了系统建模和典型循环工况下的仿真,仿真结果表明,该控制策略能够实现安全条件下的制动能量回收,制动能量回收效率达到22.11%。  相似文献   

8.
定压网络车辆的制动力分配策略   总被引:3,自引:0,他引:3  
针对一种应用定压网络液压马达控制系统的新型电控液驱车辆的制动系统,进行了制动力分配策略的研究。制动力分配策略的基本原则是根据驾驶员的意图合理地分配能耗制动和再生制动的比例,优先应用再生制动,在再生制动不能满足要求的情况下同时应用能耗制动和再生制动。提出了一种制动系统布置方案,设计了控制器并建立了系统的数学模型。利用Matlab/Simulink进行仿真,结果表明提出的制动力分配策略可以较好地满足制动要求,并能够回收19.9%以上的能量。  相似文献   

9.
以分布驱动电动汽车再生制动系统为研究对象,介绍了再生制动的基本原理及影响因素。利用Simulink建立了电动轮力学模型、轮胎模型、电机模型、电池模型以及再生制动与ABS集成控制模型。以最佳制动能量回收为目标,进行单一附着路面相同目标制动强度下不同制动初始车速和相同制动初始车速下不同的附着路面不同制动强度的仿真。结果表明,再生制动与ABS集成控制策略能按照电动轮状态进行有效而准确的控制和能量回收,验证了所建模型的准确性和控制策略的有效性。  相似文献   

10.
在充分考虑电机转矩特性、电池耐受性、车速、理想制动力分配I曲线、ECE法规曲线等因素的情况下,兼顾再生制动回收效率及制动稳定性,基于制动强度Z的大小分配前后轴制动力,利用Matlab/Simulink建立控制策略模型、AVL Cruice建立整车模型,并与固定比例分配前后轴制动力的控制策略进行联合仿真对比分析。结果表明,本文控制策略保证制动安全与稳定的前提下有效提高制动能量的回收效率。  相似文献   

11.
针对电动装载机的电液复合制动系统,为满足多工况制动需求以及保障制动安全性,本文提出了一种基于再生制动自由行程液压制动阀的电动装载机液压制动系统。结合电动装载机的理想前后轮制动力分配曲线以及制动意图识别得到的制动强度,制定了制动强度与整车制动力矩需求的分配曲线;为进一步提高再生制动力与液压制动力分配的协调性,同时兼顾制动能量回收效率,提出了一种基于行走再生制动和液压制动的电液复合制动协同控制策略,降低了整车总制动力矩波动,保证了制动模式切换的平顺性。最后,搭建了基于AMESim-Matlab/Simulink联合仿真模型,并搭建试验样机,验证了电动装载机复合制动协同控制策略的可行性,结果表明,该系统能量回收效率可达71.6%,制动回收率可达44.5%,一个工作循环实现节能7.6%,说明本文提出的控制策略具有良好的制动性能和能量回收效率。  相似文献   

12.
为了解决大惯量回转系统频繁启动和制动作业导致节流损失大和制动动能浪费严重的问题,提出一种电气和液压混合驱动大惯量回转系统。系统采用永磁同步电机作为主动力源,控制回转系统运动;由蓄能器提供动力的液压马达作为辅助动力源,为电机启动加速提供扭矩补偿,蓄能器高效回收制动动能再利用。建立多学科联合仿真系统模型,基于主辅动力源合理供给原则,设计全周期工况识别速度控制策略,搭建电液混合驱动回转试验平台,对回转系统的特性和能效进行分析。研究结果表明,电液混合驱动大惯量回转系统,随着转速和转动惯量的变化,回转制动动能回收效率为40.5%~65.9%。相同工况下,与纯电机驱动系统相比,电液混合驱动系统启动加速时间减小1.2 s,制动动能回收效率为63.5%,降低系统能耗40.8%,使回转系统更加平稳地运行。  相似文献   

13.
纯电动汽车机电复合制动研究中,实现液压制动力的良好控制对能量回收与制动效能有着非常积极的意义.通过探究电动汽车机电复合制动的结构特性和工作原理,提出相应的机电复合制动协调控制策略,并通过实验测取了液压力变化特性曲线.结果表明,通过搭建的液压制动力控制装置实现了不同制动需求下的液压力的控制,为机电制动力控制研究提供参考.  相似文献   

14.
基于电动伺服系统的制动能量回收控制策略研究   总被引:1,自引:0,他引:1  
基于电动伺服系统对制动能量回收控制策略进行研究。首先对电动伺服制动系统的部件组成和工作机理进行分析;然后取车速和制动强度双参数对制动模式进行划分,并兼顾整车经济性和车辆安全性对电液制动力进行协调分配,使用制动强度、初始车速、电池SOC对电动机制动扭矩进行修正;分析了轮缸压力控制理论,并给出压力控制需求,基于电动伺服系统提出前馈加三闭环反馈的轮缸压力控制算法,实现轮缸压力的精确控制,通过仿真跟随正弦曲线目标压力对提出的算法进行验证,结果表明此压力控制算法可以满足控制需求;最后在纯电动整车平台上对提出的制动力分配策略和压力控制算法进行验证,并以制动能量回收率为节能评价指标,对制动能量回收策略进行经济性评价,试验结果验证了提出的制动力分配策略和压力控制算法的有效性和可行性。该制动能量回收策略能显著提高制动能量回收率,改善整车经济性。  相似文献   

15.
开发出的双转子混合动力系统,主要由发动机、双转子电机、电机控制器、电池、电池管理系统和整车控制器构成。系统能够实现发动机停车启动模式、停车充电模式、起步和低负荷模式、巡航运行模式、加速模式、能量回馈模式和倒车模式,可以较好地满足混合动力汽车的工作需要。将其安装到某SUV车型上进行测试,节油效果明显。  相似文献   

16.
以履带车辆静动液辅助制动系统为研究对象,对液压泵/马达的性能进行了理论和数值分析,获得了液压泵/马达的效率曲线,在此基础上,根据液压泵/马达的效率最优原则,提出了基于液压泵/马达效率最优的再生制动控制策略。仿真结果表明,所提出的再生制动控制策略,在保证整车安全制动的前提下,使液压泵/马达工作在高效率区,实现了液压泵/马达的高效率工作,可进一步提高整车制动能量回收率。  相似文献   

17.
液压混合动力轮式装载机节能影响因素分析与优化   总被引:5,自引:0,他引:5  
分析了低速作业工况下轮式装载机的能耗损失和混合动力装载机节能潜力。根据液压储能的特点,设计了液压混合动力并联式节能方案,通过计算和仿真,研究影响节能效果的主要因素,并对其进行优化。结果表明:优化液压混合动力系统的匹配关系,合理选择控制策略参数,充分回收制动动能和整机下长坡的重物势能,有利于提高装载机的节能指标。  相似文献   

18.
电动汽车在制动情况下提供一个良好制动性能的同时保证其能进行能量回收是电动汽车能量回收控制系统的一个重要特性。针对此特性,以本实验室的单轮ABS制动台架为原型,提出了一套控制算法,不仅合理地分配了制动器制动力和电机制动力之间的关系,而且顾及到了制动时进行制动能量回收的问题,使得电动汽车在获得制动安全性的前提下有一个良好的经济适用性,这对延长电动汽车的续驶里程有着重要的实际意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号