首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
以小干松针叶基因组DNA为模板,采用L16(45)正交实验设计,对SRAP-PCR反应体系中的Taq酶、Mg2+、dNTPs、模板DNA和引物5个因素在4个水平上进行优化.结果表明:小干松SRAP-PCR 20 μL反应体系最佳组合为:Taq酶0.5U,Mg2+浓度2.5mmol/L,dNTPs浓度0.15 mmol/L,模板DNA含量60 ng,引物0.2μmol/L.使用12对SRAP引物,采用优化后的体系进行SRAP-PCR反应,表明优化的体系很好地满足了小干松基因组DNA进行SRAP的扩增要求.  相似文献   

2.
为快速建立优化的辣椒SRAP反应体系,利用L9(34)正交表,探讨了Mg2+、dNTPs、引物和模板DNA4种主要反应成分的浓度变化对SRAP扩增结果的影响。结果表明:通过正交设计实验可高效建立优化稳定的辣椒SRAP反应体系;用该法建立的辣椒SRAP优化反应体系为:20μL反应体系中含10×PCRBuffer 2.0μL、Mg2+2.5 mmol/L、dNTPs 0.2 mmol/L,上下游引物各0.4μmol/L、模板DNA10 ng,TaqDNA聚合酶1 U。  相似文献   

3.
西藏光核桃SRAP-PCR反应体系的优化和引物筛选   总被引:1,自引:0,他引:1  
以西藏12份光核桃种质为试材,采用正交设计,从dNTPs、Mg2+、引物、模板DNA和Taq DNA聚合酶5种因素5个水平来优化SRAP-PCR反应体系,并对引物进行了筛选。结果表明:光核桃25μL的SRAP反应体系的最佳组分包括2.5μL 10×buffer,0.35 mmol/L dNTPs,1.5 mmol/L Mg2+,0.4μmol/L引物,20 ng模板DNA和2.5 U Taq DNA聚合酶。各因素对扩增反应结果均有不同影响,其中以dNTPs浓度影响最大,模板DNA的影响最小。应用该体系从40个引物组合中共筛选出扩增条带清晰、多态性丰富的SRAP引物组合23个。这一体系的建立及多态性引物组合的筛选为利用SRAP标记技术进行光核桃遗传多样性研究提供了依据。  相似文献   

4.
以羽衣甘蓝基因组DNA为模板,对相关序列扩增多态性聚合酶链式反应(SRAPPCR)体系的各影响因子进行了单因素梯度设置,并优化了反应程序,筛选和建立了可扩增多态性高、重复性好、带型清晰的最佳SRAP反应体系和程序。结果表明:羽衣甘蓝最佳SRAP-PCR反应体系总体积10μL,包含DNA模板50ng,1×buffer,dNTPs 0.20mmol/L,Taq酶1U,引物各0.60μmol/L。羽衣甘蓝最佳SRAP-PCR反应程序为94℃预变性5min,94℃变性30s,35℃退火30s,72℃延伸30s,5个循环;94℃变性30s,50℃退火30s,72℃延伸30s,35个循环;72℃终延伸7min,4℃保存。经22个羽衣甘蓝F2群体单株对上述优化的反应体系和程序进行验证,均获得了多态性丰富、条带清晰的扩增图谱,表明该程序和体系能很好地满足羽衣甘蓝基因组SRAP扩增要求。  相似文献   

5.
樱桃SRAP-PCR体系优化及其遗传多样性分析   总被引:5,自引:1,他引:4  
选取亲缘关系较远的3个不同基因型樱桃资源为试材,对影响SRAP标记PCR反应的模板、Mg2+、dNTPs、Taq酶及引物浓度进行了优化,建立了适合于樱桃SRAP标记的扩增体系。反应体系具体为:模板DNA75ng,dNTPs0.2mmol·L-1,Mg2+2.5mmol·L-1,引物0.3μmol·L-1,Taq酶1.0U,反应总体积20μL。采用优化的扩增体系,对45个樱桃种质材料进行了遗传多样性分析,筛选8对扩增清晰且多态性高的引物组合,检测位点共227个,其中多态性位点192个,占84.6%。应用NTSYS-pc软件进行聚类分析(UPGMA),结果表明45个樱桃品种可分为欧洲甜樱桃和中国樱桃2大类,品种间遗传相似系数在0.52~0.98;其中中国樱桃与甜樱桃种间的相似系数最小,表明2类种质具有不同的遗传背景;而组群内的不同品种资源表现了较高的遗传相似性。SRAP分子标记的聚类分析揭示了樱桃品种间亲缘关系与地理分布以及来源相关。  相似文献   

6.
杨树SRAP-PCR反应体系的建立与优化   总被引:1,自引:0,他引:1  
以辽宁杨为材料,建立了杨树的SRAP-PCR扩增体系。利用单因素试验对影响扩增的5个组分进行了优化,确定在25μL反应体系中:Mg2+浓度为2.0 mmol/L、dNTPs浓度为0.2 mmol/L、TaqDNA聚合酶浓度为1.0 U、引物浓度为0.3μmol/L、模板DNA浓度30 ng/μL。利用优化后的反应体系对17个杨树材料进行了多态性检测,结果表明:该体系能够很好的满足杨树基因组SRAP扩增的要求。  相似文献   

7.
丝瓜种质资源遗传多样性的SSR与SRAP分析   总被引:1,自引:0,他引:1  
利用SSR和SRAP标记对30份丝瓜种质资源进行遗传多样性分析,分别从52对SSR和48对SRAP引物中选取10对和12对多态性好的引物,其中10对SSR引物共扩增出32条多态性带,12对SRAP引物扩增出118条多态性带。30份种质间的平均遗传相似系数为0.761,说明丝瓜间种质遗传背景比较狭隘。聚类分析显示,30份丝瓜种质被划分为普通丝瓜与有棱丝瓜两大类。  相似文献   

8.
为了对SRAP分子标记在辣椒中的应用进行优化,试验采用正交设计L16(45),在4个水平上对影响辣椒SRAP反应体系的Taq酶浓度、Mg2+含量、模板DNA用量、dNTP浓度及引物用量等5个因素进行了优化,并用单因素完全随机试验筛选各反应因素的最佳水平,建立了辣椒SRAP分子标记的最佳体系。结果表明,在10μL反应体系中,Taq酶最适浓度为1.5U、Mg2+最适浓度为1.5 mmol/L、模板DNA最适用量为100ng、dNTP最适用量为0.3 mmol/L、引物最适浓度为0.1μmol/L。利用20个辣椒材料来验证此反应体系,6%变性聚丙烯酰胺凝胶电泳检测结果显示,扩增产物在350~750 bp之间多态性高,且反应体系的稳定性和重复性好。通过优化的SRAP分子标记对F1代辣椒种子航椒4号进行纯度检测,检测结果为98%,与其田间检测结果100%十分接近。表明了SRAP分子标记技术是鉴定辣椒一代杂种纯度的有效方法,具有准确、可靠、快速的特点,在辣椒杂交种子纯度室内快速检测中有很大的应用前景。  相似文献   

9.
正交直观分析法和新复极差法优化苦瓜SRAP反应体系研究   总被引:1,自引:0,他引:1  
以苦瓜为试材,采用正交直观分析法和新复极差法相结合的方法,对影响苦瓜SRAP反应体系的5种因素(dNTP浓度、模板DNA、引物浓度、Mg2+浓度及Taq DNA聚合酶)4个水平进行优化筛选,以期优化苦瓜SRAP的PCR反应体系。结果表明:苦瓜SRAP分析的优化反应体系为20μL PCR反应体系中含有1×PCR buffer,250μmol/L dNTP,50ng模板DNA,1.2μmol/L引物,1.5mmol/L Mg2+,1.5UTaq DNA聚合酶。  相似文献   

10.
收集国内部分真姬菇菌株于实验室进行菌株复壮,并采用多种提取方法提取其基因组。以获得的基因组DNA为模板,摸索PCR反应体系。获得PCR最佳反应体系后,开展适宜ISSR和SRAP遗传多样性分析的引物筛选。筛选得到18条适用于扩增真姬菇菌株的ISSR引物,以及适用于分析真姬菇SRAP的前端引物和后端引物配对组合。  相似文献   

11.
利用正交设计L16(45)对甘蔗SRAP-PCR反应体系的五大因素(Mg2+、dNTPs、引物、模板DNA、Taq酶)在4个水平上进行优化,得到如下结论:各因素水平变化对PCR反应的影响从大到小依次是:Mg^2+、dNTPs、引物、Taq酶和模板DNA;通过对各因素进行筛选,建立甘蔗SRAP-PCR反应的最佳体系(20μL)为:dNTPs 0.25 mmol/L、引物0.1μmol/L、Mg^2+2.5 mmol/L、Taq酶0.25U和模板DNA 60 ng。  相似文献   

12.
以番茄耐低温材料抗寒0号和不耐低温番青的F2为材料,利用正交试验设计对SRAP-PCR反应体系中的5因素(模板DNA、引物浓度、Mg2+浓度、dNTPs浓度、Taq DNA聚合酶)在4个水平上进行正交优化试验。结果表明:各因素水平变化对反应体系影响的大小依次为:引物>Taq DNA聚合酶>dNTPs>模板DNA>Mg2+。建立番茄耐低温SRAP-PCR的20 μL最佳反应体系为:模板DNA为15 ng、引物浓度0.75 μmol?L-1、Mg2+浓度2.0 mmol?L-1、dNTPs浓度0.125 mmol?L-1、Taq DNA聚合酶1.0 U。  相似文献   

13.
苹果SRAP-PCR反应体系的建立   总被引:6,自引:1,他引:5  
以苹果(Malus domestica Borkh.)品种Telamon及Telamon×Fuji的F1代为试材,采用改良的CTAB法提取苹果叶片的DNA,利用正交设计L16(45)和直观分析以及方差分析相结合,探讨了Mg2+、dNTPs、Primer、Taq聚合酶、模板DNA用量对苹果SRAP-PCR反应的影响。建立了总体积为10μL的苹果SRAP-PCR反应体系,Mg2+浓度为2.0mmol.L-1,dNTPs浓度为0.8 mmol.L-1,Primer浓度为0.2μmol.L-1,Taq DNA聚合酶含量为0.6 U,DNA含量为60 ng,并含1μL 10×buffer(Mg2+free)。应用该反应体系,用不同的引物组合对48份苹果样品DNA进行SRAP-PCR扩增,结果显示反应体系具有较高的稳定性。  相似文献   

14.
利用正交实验设计L16(45)对番茄SRAP-PCR反应体系的5个因素(Mg2+、dNTPs、引物、Taq DNA聚合酶和模板DNA)在4个水平上进行优化试验研究。结果表明:各因素水平变化对反应体系影响的大小依次为:Mg2+dNTPs引物Taq DNA聚合酶模板DNA;建立的番茄SRAP-PCR最佳体系(25μL)为:Mg2+2.5mmol/L、Taq DNA聚合酶0.5U、dNTPs0.25mmol/L、引物0.4μmol/L、模板DNA 80ng。  相似文献   

15.
以合肥黄心乌为试材,利用正交试验设计,对SRAP-PCR反应体系中的Mg2+浓度、dNTPs浓度、引物浓度、Taq聚合酶浓度和模板DNA浓度进行5因素4水平的筛选分析,用me3-em3引物组合进行PCR扩增以确定最佳反应体系。结果表明,安徽乌菜SRAP-PCR最佳反应体系为:10×PCR buffer 1μL,Mg2+ 3.0mmol·L-1,dNTPs 0.2mmol·L-1,引物各0.5mol·L-1,模板DNA 4.0ng·μL-1,Taq聚合酶0.05U·μL-1,总体积为10μL。利用此反应体系对安徽乌菜进行PCR扩增并电泳检测,其结果清晰、稳定、可靠,可用于安徽乌菜的遗传分析。  相似文献   

16.
部分柿属植物SRAP-PCR反应体系的优化   总被引:42,自引:1,他引:42  
郭大龙  罗正荣 《果树学报》2006,23(1):138-141
SRAP技术是一种多态性和信息量丰富的新的分子标记技术,其技术简便、快速,不需预知序列信息,近年来在植物遗传多样性分析、种质鉴定、遗传连锁图的构建以及比较基因组学研究等方面得到广泛应用。为了建立柿属植物SRAP技术体系,对影响SRAP-PCR的Mg2+、dNTPs、Taq聚合酶、引物浓度等因素进行了优化。确定优化的反应体系为:模板DNA30ng,Buffer1×,Mg2+2.5mmol/mL,dNTPs0.2mmol/L,Taq酶1u,引物0.3μmol/L,反应总体积25μL。该体系在柿属植物6种1类型共29个基因型中获得较好的扩增结果,可望在柿属植物起源和进化研究中应用。  相似文献   

17.
现利用正交设计L16(45)探讨DNA模板、Mg2+、dNTPs、引物、TaqDNA聚合酶对石榴ISSR-PCR反应体系的影响,首次应用加权平均法及百分制对正交实验结果进行评分,并应用DPS数据处理系统进行数据分析;同时对石榴ISSR-PCR最佳反应体系进行退火温度梯度试验。结果表明:适合石榴的ISSR-PCR最优反应体系(25μL)为:Mg2+1.75 mmol/L、dNTPs0.15 mmol/L、TaqDNA聚合酶1 U、引物0.8 mmol/L、DNA模板20 ng;引物UBC 811的最适退火温度为51.2℃,且最适退火温度因引物而异。  相似文献   

18.
应用正交设计的方法对影响鸭梨Hc ISSR-PCR反应的4个因素(模板DNA、引物、dNTPs、TaqDNA聚合酶)进行5个水平的优化试验,以DPS 7.55软件分析。结果表明:鸭梨HcISSR-PCR的最佳反应体系(20μL)为:模板DNA 60 ng、引物浓度0.4μmol/L、dNTPs浓度0.1mmol/L、TaqDNA聚合酶2 U。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号