首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work was aimed at understanding the mechanisms of T-lymphocyte function by studying the cellular distribution and traffic of molecules of the T-cell receptor complex. The accumulation of specific molecules in intracytoplasmic vesicles is related to the activation of T lymphocytes. Some of these molecules include acid hydrolases, the transferrin receptor, and class I antigens of the major histocompatibility complex. Molecules of the T-cell receptor complex have now also been found in intracytoplasmic vesicles in a human T-cell line derived from a lymphoblastic leukemia. Such vesicles were tightly associated with the cytoplasmic microtubule network. One functional aspect of this association is a cellular pathway by which vesicles traveling to and from the cell surface converge in an area of the cells that is rich in processing enzymes.  相似文献   

2.
3.
The properties of the viral and cellular fos proteins (Fos) were investigated as a first step toward understanding the function of the fos gene. Treatment of nuclei with salt and nonionic detergents solubilized a complex that contained Fos together with several other cellular proteins. The majority of the Fos protein complex was released from isolated nuclei incubated in the presence of deoxyribonuclease I or micrococcal nuclease but not with ribonuclease A, suggesting that Fos is associated with chromatin. This hypothesis is supported by the finding that Fos protein from native or denatured nuclear extracts exhibited DNA-binding activity in vitro. These results suggest that Fos is involved in the regulation of gene expression.  相似文献   

4.
Vitamin A has diverse biological functions. It is transported in the blood as a complex with retinol binding protein (RBP), but the molecular mechanism by which vitamin A is absorbed by cells from the vitamin A-RBP complex is not clearly understood. We identified in bovine retinal pigment epithelium cells STRA6, a multitransmembrane domain protein, as a specific membrane receptor for RBP. STRA6 binds to RBP with high affinity and has robust vitamin A uptake activity from the vitamin A-RBP complex. It is widely expressed in embryonic development and in adult organ systems. The RBP receptor represents a major physiological mediator of cellular vitamin A uptake.  相似文献   

5.
6.
Female steroid hormones and target cell nuclei   总被引:58,自引:0,他引:58  
  相似文献   

7.
8.
9.
In budding yeast, phosphate starvation triggers inhibition of the Pho80-Pho85 cyclin-cyclin-dependent kinase (CDK) complex by the CDK inhibitor Pho81, leading to expression of genes involved in nutrient homeostasis. We isolated myo-d-inositol heptakisphosphate (IP7) as a cellular component that stimulates Pho81-dependent inhibition of Pho80-Pho85. IP7 is necessary for Pho81-dependent inhibition of Pho80-Pho85 in vitro. Moreover, intracellular concentrations of IP7 increased upon phosphate starvation, and yeast mutants defective in IP7 production failed to inhibit Pho80-Pho85 in response to phosphate starvation. These observations reveal regulation of a cyclin-CDK complex by a metabolite and suggest that a complex metabolic network mediates signaling of phosphate availability.  相似文献   

10.
The signal recognition particle (SRP) is a universally conserved ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to cellular membranes. A crucial early step in SRP assembly in archaea and eukarya is the binding of protein SRP19 to specific sites on SRP RNA. Here we report the 1.8 angstrom resolution crystal structure of human SRP19 in complex with its primary binding site on helix 6 of SRP RNA, which consists of a stem-loop structure closed by an unusual GGAG tetraloop. Protein-RNA interactions are mediated by the specific recognition of a widened major groove and the tetraloop without any direct protein-base contacts and include a complex network of highly ordered water molecules. A model of the assembly of the SRP core comprising SRP19, SRP54, and SRP RNA based on crystallographic and biochemical data is proposed.  相似文献   

11.
12.
The cellular DNA damage response (DDR) is initiated by the rapid recruitment of repair factors to the site of DNA damage to form a multiprotein repair complex. How the repair complex senses damaged DNA and then activates the DDR is not well understood. We show that prolonged binding of DNA repair factors to chromatin can elicit the DDR in an ATM (ataxia telangiectasia mutated)- and DNAPK (DNA-dependent protein kinase)-dependent manner in the absence of DNA damage. Targeting of single repair factors to chromatin revealed a hierarchy of protein interactions within the repair complex and suggests amplification of the damage signal. We conclude that activation of the DDR does not require DNA damage and stable association of repair factors with chromatin is likely a critical step in triggering, amplifying, and maintaining the DDR signal.  相似文献   

13.
The macrocyclic core of the antibiotic erythromycin, 6-deoxyerythronolide B (6dEB), is a complex natural product synthesized by the soil bacterium Saccharopolyspora erythraea through the action of a multifunctional polyketide synthase (PKS). The engineering potential of modular PKSs is hampered by the limited capabilities for molecular biological manipulation of organisms (principally actinomycetes) in which complex polyketides have thus far been produced. To address this problem, a derivative of Escherichia coli has been genetically engineered. The resulting cellular catalyst converts exogenous propionate into 6dEB with a specific productivity that compares well with a high-producing mutant of S. erythraea that has been incrementally enhanced over decades for the industrial production of erythromycin.  相似文献   

14.
The ubiquitination of the hypoxia-inducible factor (HIF) by the von Hippel-Lindau tumor suppressor (pVHL) plays a central role in the cellular response to changes in oxygen availability. pVHL binds to HIF only when a conserved proline in HIF is hydroxylated, a modification that is oxygen-dependent. The 1.85 angstrom structure of a 20-residue HIF-1alpha peptide-pVHL-ElonginB-ElonginC complex shows that HIF-1alpha binds to pVHL in an extended beta strand-like conformation. The hydroxyproline inserts into a gap in the pVHL hydrophobic core, at a site that is a hotspot for tumorigenic mutations, with its 4-hydroxyl group recognized by buried serine and histidine residues. Although the beta sheet-like interactions contribute to the stability of the complex, the hydroxyproline contacts are central to the strict specificity characteristic of signaling.  相似文献   

15.
High-throughput genome-wide molecular assays, which probe cellular networks from different perspectives, have become central to molecular biology. Probabilistic graphical models are useful for extracting meaningful biological insights from the resulting data sets. These models provide a concise representation of complex cellular networks by composing simpler submodels. Procedures based on well-understood principles for inferring such models from data facilitate a model-based methodology for analysis and discovery. This methodology and its capabilities are illustrated by several recent applications to gene expression data.  相似文献   

16.
Scaffold proteins: hubs for controlling the flow of cellular information   总被引:2,自引:0,他引:2  
The spatial and temporal organization of molecules within a cell is critical for coordinating the many distinct activities carried out by the cell. In an increasing number of biological signaling processes, scaffold proteins have been found to play a central role in physically assembling the relevant molecular components. Although most scaffolds use a simple tethering mechanism to increase the efficiency of interaction between individual partner molecules, these proteins can also exert complex allosteric control over their partners and are themselves the target of regulation. Scaffold proteins offer a simple, flexible strategy for regulating selectivity in pathways, shaping output behaviors, and achieving new responses from preexisting signaling components. As a result, scaffold proteins have been exploited by evolution, pathogens, and cellular engineers to reshape cellular behavior.  相似文献   

17.
人端粒酶活性的调控机制及其新功能研究进展   总被引:2,自引:1,他引:1  
端粒酶活性在胚胎发育过程中消失,人的绝大多数体细胞没有端粒酶活性,因而随着体细胞分裂次数的增加,端粒长度在不断缩短.当端粒缩短到一定程度时,细胞无法维持正常的端粒结构而导致细胞的衰老,而当细胞衰老调控机制失控的情况下,端粒的极限缩短将导致细胞死亡或癌变.端粒酶的活性在细胞癌变的过程中被重新激活以维持端粒的长度和结构,以及细胞无限增殖化的能力,与衰老及肿瘤的发生发展密.切相关.随着人们对端粒酶认识的深入,新研究进展显示端粒酶具有独立于端粒之外的新功能,端粒酶在DNA修复、促进细胞存活、基因转录及刺激干细胞增殖等方面不依赖于端粒的新功能的发现,为阐明端粒酶在衰老及癌变中重要功能的分子机制提供了新的思路.  相似文献   

18.
Calmodulin plays a pivotal role in cellular regulation   总被引:129,自引:0,他引:129  
The role of calcium ions (Ca2+) in cell function is beginning to be unraveled at the molecular level as a result of recent research on calcium-binding proteins and particularly on calmodulin. These proteins interact reversibly with Ca2+ to form a protein . Ca2+ complex, whose activity is regulated by the cellular flux of Ca2+. Many of the effects of Ca2+ appear to be exerted through calmodulin-regulated enzymes.  相似文献   

19.
The c-fos serum response element (SRE) is a primary nuclear target for intracellular signal transduction pathways triggered by growth factors. It is the target for both protein kinase C (PKC)-dependent and -independent signals. Function of the SRE requires binding of a cellular protein, termed serum response factor (SRF). A second protein, p62TCF, recognizes the SRE-SRF complex to form a ternary complex. A mutated SRE that bound SRF but failed to form the ternary complex selectively lost response to PKC activators, but retained response to PKC-independent signals. Thus, two different signaling pathways act through discrete nuclear targets at the SRE. At least one of these pathways functions by recruitment of a pathway-specific accessory factor (p62TCF). These results offer a molecular mechanism to account for the biological specificity of signals that appear to act through common DNA sequence elements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号