首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
 Litterfall, leaf litter decomposition and N and P release were studied in four tree species (Dalbergia sissoo, Azadirachta indica, Pongamia pinnata and Shorea robusta) planted on a mine spoil habitat. Annual litterfall varied from 1220 kg ha–1 in the S. robusta stand to 3620 kg ha–1 in the A. indica stand. The fast-growing species A. indica and D. sissoo exhibited higher litter production in comparison to the other two slow-growing species. The total N returned to the soil through litterfall ranged from 8.6 kg ha–1 year–1 in the S. robusta stand to 36.5 kg ha–1 year–1 in the D. sissoo stand. The annual percent leaf litter mass loss was distinctly greater in A. indica (73%) and D. sissoo (69%) in comparison to P. pinatta (59%) and S. robusta (47%). The mean relative decomposition rates of leaf litter material were maximum in the rainy season and minimum in summer. Rainfall and its associated variables exhibited greater control over litter docomposition than temperature. Lignin and water-soluble compounds were better predictors of annual mass loss rates accounting for 90% variability. Mass loss was positively correlated with N and P mineralization rates. Lignin was the best predictor of annual N and P mineralization rates. Nutrient release pattern differed; constant release occurred in A. indica, initial release followed by delayed immobilization and release occurred in D. sissoo and P. pinnata, and initial immobilization followed by gradual release was noticed in S. robusta. A. indica and D. sissoo, showing high litterfall and rapid litter decomposition rate, hold promise for the rehabilitation of nutrient-poor coal mine spoils. On the other hand, S. robusta with less litterfall and a slow decomposition rate may prove disadvantageous. Received: 10 March 1998  相似文献   

2.
Jarrah (Eucalyptus marginata Donn ex Smith) forest grows on poor soils with low stores of plant-available nutrients. We evaluated the impact of fertilizers on nutrient cycling in soil under Jarrah forest using a field study with three rates of P (0, 50, 200 kg P ha–1) and three rates of N (0, 100, 200 kg N ha–1) in a full factorial design. Litterfall was significantly increased by N application (30% relative to controls) in the first 2 years after treatment and by P application in the second year. The amounts of N, P, K, Ca and Mg in litterfall were also increased significantly by both N and P fertilizer. Although fertilizer treatments did not affect the total amount of litter accumulated on the forest floor over 4–5 years after application, there were large treatment differences in the amounts of N and P stored in the forest floor. Microbial respiration in litter was significantly greater (19%) on P-treated plots relative to controls, but this increase did not translate into increased decomposition rates as measured in long-term (5-year) mesh-bag studies. The results indicate that factors other than nutrition are mainly responsible for controlling the rate of decomposition in this ecosystem. Application of P, in particular, resulted in substantial accumulation of P in forest floor litter over 5 years. This accumulation was partly a result of the deposition of P in litterfall, but was also probably a result of translocation of P from the mineral soil. During the 5-year decomposition study, there was no net release of P from leaf litter and, at the highest rate of P application, the amounts of P stored in forest floor litter were more than four-fold greater than in fresh litter. Regular fire, a common phenomenon in these ecosystems, may be an important P-mobilizing agent for enhancing plant P uptake in these forests.  相似文献   

3.
Biomass productivity and nutrient cycling in a Bambusa bambos plantation aged 4, 5, and 6 years were studied. The dry matter production of above-ground biomass increased progressively with age. Nutrient quantities in bamboo stands were in a range of 1–2 t ha-1 for N and K, 0.5–1 t ha-1 for Ca and Mg, and 0.1–0.2 t ha-1 for P. Nutrient concentrations increased with the age of the plantation. About 10% year-1 the nutrients present in the biomass of the bamboo stand are recycled to the soil by litter fall.  相似文献   

4.
川西3种亚高山针叶林的养分和凋落物格局分析   总被引:4,自引:0,他引:4  
LIN Bo  LIU Qing  WU Yan  HE Hai 《土壤圈》2006,16(3):380-389
Investigations were conducted to quantify litterfall, and litter and nutrient accumulation in forest floor, and to acquire information on litter decomposition and nitrogen and phosphorus release patterns in three different subalpine coniferous forests, a plantation (P1), a secondary forest (SF), and a primitive forest (PF), in western Sichuan, China. The litter trap method was used to evaluate litterfall with the litterbag method being utilized for litter decomposition. Seasonal patterns of litterfall were similar in the three forests, with two peaks occurring in September-November and March-May. The plantation revealed an annual litterfall of 4.38 x 103 kg ha-1, which was similar to those of SF and PF, but P1 had a lower mass loss rate and a higher C/N ratio. The C/N ratio may be a sound predictor for the decomposition differences. N concentrations of leaf litter in both the secondary forest and primitive forest increased first and then decreased, and the percentages of their final/initial values were 108.9% and 99.9%, respectively. P concentration in the three forests increased by the end of the study. The results of litterfall and decomposition indicated that in the plantation the potential to provide nutrients for soil organic matter was similar to those of SF and PF; however, its slower decomposition rate could result in a somewhat transient accumulation of litter in the forest floor.  相似文献   

5.
Crop rotations and tillage practices influence the quantity and quality of soil organic N (SON). We evaluated the impact of crop rotations and tillage practices on SON and mineralizable N at a depth of 0–15 cm in six field experiments, varying in duration over 8–25 years, that were being conducted in three Chernozemic soil zones in Saskatchewan, Canada. In a Brown Chernozem, continuous wheat increased SON at 0–15 cm by 7–17 kg N ha–1year–1 more than fallow/wheat. In a Dark Brown Chernozem, continuous cropping increased SON by 30 kg N ha–1year–1, compared with cropping systems containing fallow once every 3 years; and, in a Rego Black Chernozem, the increase in SON was 29 kg N ha–1 year–1, compared with cropping systems containing fallow once every 4 years. The increase in SON due to increased cropping frequency was accompanied by an increase in the proportion of mineralizable SON in the Brown Chernozem, but not in the Dark Brown and Black Chernozems. In the Brown Chernozemic soil zone, no-tillage management increased SON, compared with conventional tillage, varying from 16 kg N ha–1year–1 to 28 kg N ha–1year–1. In the Dark Brown Chernozemic soil zone, it increased SON by 35 kg N ha–1year–1 and, in the Black Chernozemic soil zone, by about 40 kg N ha–1year–1. Increases in SON at a depth of 0–7.5 cm due to no-tillage management was accompanied by a greater increase in the mineralizable N for Hatton fine sandy loam, Melfort silty clay and Indian Head clay than for other soils, indicating that the material responsible for the increased SON due to no-tillage was more labile than the soil humus N. However, the increased SON under no-till in Swinton loam, Sceptre clay and Elstow clay loam was not associated with an increase in the mineralizable N, indicating that this increased SON was no more susceptible to decomposition than the soil humus N. Therefore, increases in SON under improved management practices, such as conservation tillage and extended crop rotations, do not necessarily increase the potential soil N availability.  相似文献   

6.
The decomposition and nutrient content of litter was studied for 2 years in regrowth Eucalyptus diversicolor forest to which N (0, 200 kg ha-1 year-1) and P (0, 30, 200 kg ha-1) had been applied. The P addition increased, and the N addition decreased, the rate of dry weight loss of decomposing litter. Analysis of the coefficients of a double exponential decay model with components describing the release of labile and resistant fractions indicated that decomposition of the resistant component of litter was most affected by the fertilizer additions. Treatment with N reduced the rate of loss of this component and increased its half-life by approximately 30%, whereas P treatment increased its rate of decay and decreased its half-life by approximately 30%. P accumulated in litter during decomposition. P uptake and retention was greater in P-treated than untreated plots. The application of N reduced P accumulation in litter. An accumulation of N also occurred during decomposition, the amount of N imported into litter being greater on plots treated with N fertilizer. Treatment with N affected the amount of S in decomposing litter. Litter on N-treated plots either accumulated more S or released it more slowly than litter on plots not treated with N. The application of N as NH4NO3 decreased forest-floor litter pH, increased litter layer mass (by 15%), and increased the amount of N (by 34%) and S (by 32%) stored in the forest floor. Treatment with P reduced the amount of N (by 22%) stored in the litter layer. The application of 200 kg P ha-1 in the absence of N increased the store of P in the litter layer by 80%, but when N and P were applied together the amount of P in the litter was not significantly different between P treatments.  相似文献   

7.
Feeding and casting activity of Amynthas alexandri fed on corn, wheat leaves, and mixed grasses were monitored in laboratory cultures. Casts were produced on the surface and sides of the containers. Food consumption varied from 36.5 to 69 mg g–1 live worm day–1. Cast production ranged from 3.95 to 5.9 mg g–1 live worm day–1. The C:N ratio in casts in laboratory cultures (11.17) and in field samples (8.84) was consistently lower than the corresponding ratio in the parent soil (13.19 and 10.54, respectively). This was probably due to mineralization of plant-derived organic material during passage through earthworms with consequent low C:N ratios.  相似文献   

8.
Fungi,bacteria and protozoa in soil from four arable cropping systems   总被引:2,自引:0,他引:2  
Summary The effects of four cropping systems on soil microorganisms were investigated during 3 years. The cropping systems were B0, barley without nitrogen fertilizers; B120, barley with 120 kg N ha–1 year–1; GL, grass ley receiving 200 kg N ha–1 year–1; and LL, lucerne ley without nitrogen fertilizer additions. At samplings in September during three consecutive years no differences were found between treatments. Total fungal lengths ranged between 0.7 and 2.0 × 103 m and bacterial numbers between 3.5 and 7.2 × 109 g–1 dry wt. soil.Twenty samplings over 3 years in B120 and in GL indicated higher numbers of bacteria and protozoa during the growing season, except for periods with moisture stress. No clear seasonal trends were found for the fungi. When comparing mean values for the 20 samplings, the grass ley contained significantly (P < 0.05) higher numbers of amoebae. Means of the bacterial numbers and biomass, total and FDA-active hyphal lengths were also higher or equal (FDA-active hyphae) but not significantly so.Seventy-nine per cent of the bacterial biomass and 73% of the total fungal lengths were found in the top soil, where also 85% of the oxygen was consumed.  相似文献   

9.
Understanding cover crop influences on N availability is important for developing N management strategies in conservation tillage systems. Two cover crops, cereal rye (Secale cereale L.) and crimson clover (Trifolium incarnatum L.), were evaluated for effects on N availability to cotton (Gossypium hirsutum L.) in a Typic Kanhapludult soil at Watkinsville, Ga. Seed cotton yields following clover and rye were 882 kg ha–1 and 1,205 kg ha–1, respectively, in 1997 and were 1,561 kg ha–1 and 2,352 kg ha–1, respectively, in 1998. In 1997, cotton biomass, leaf area index, and N were greater on some dates following crimson clover than following rye but not in 1998. During 1997, net soil N mineralized increased with time in both systems, but a similar response was not observed in 1998. Net soil N mineralization rates following crimson clover and rye averaged, respectively, 0.58 kg and 0.34 kg N ha–1 day–1 in 1997 and 0.58 kg and 0.23 kg N ha–1 day–1 in 1998. Total soil N mineralized during the cotton growing season ranged from 60 kg ha–1 to 80 kg ha–1 following crimson clover and from 30 kg ha–1 to 50 kg ha–1 following rye. Soil N mineralization correlated positively with heat units and cumulative heat units. Net soil N mineralization rates were 0.023 kg ha–1 heat unit–1 once net mineralization began. Soil heat units appeared to be a useful tool for evaluating N mineralization potential. Nearly 40% of the rye and 60% of the clover biomass decomposed during the 6 weeks prior to cotton planting, with nearly 35 kg N ha–1 mineralized from clover.  相似文献   

10.
Forest ecosystems in Taiwan are periodically influenced by typhoons that cause large amounts of litter input to the soil. The potential rapid decomposition of such litter under the warm and moist climatic conditions in Taiwan may lead to nutrient losses via seepage. The goal of this study was to investigate the dynamics of C, N, K, Ca, Mg, and dissolved organic carbon (DOC) during decomposition of Chamaecyparis obtusa var. formosana leaves in a field study at the Yuanyang Lake site in N Taiwan. We simulated the effect of a typhoon by adding about three times the annual aboveground litterfall (totally 13,900 kg ha–1) as fresh leaves. Litterbags were taken at 7 dates over 16 months, followed by detection of mass loss and element composition in the remaining litter. Aqueous extracts of the remaining litter were analyzed for DOC and major elements. The properties of DOC were characterized by fluorescence spectra and by its stability against microbial decomposition. The litter mass loss was 35% after 16 months. The losses of Ca after 16 months from the litter bags were about equivalent to mass loss (39%), while those of K and Mg reached 86% and 60% of the initial amount, respectively. From the 13,900 kg ha–1 of litter applied in total, 59 kg K ha–1 and 12 kg Mg ha–1 were released in the 16 months decomposition period, most of it in the first 4 months. The total release of Ca amounted to 69 kg ha–1 but was more evenly distributed throughout the 16 months of observation. The absolute amount of N in the decomposing litter increased by 37% while the C : N decreased from 69 to 34. Extrapolated to the manipulation treatment, this resulted in a N gain of 36 kg N ha–1 within 16 months. The leaching of K and DOC in laboratory extractions followed an asymptotic function with highest leaching from the initial litter and subsequent decrease with time of decomposition. On the contrary, the leaching of Ca and Mg reached a maximum after 2–4 months of incubation. About 2% of the C was extractable with water from the initially incubated leaves. The bioavailability of the extracted DOC decreased with litter age. Our results indicate that the decomposition of large amounts of litter induces a high risk of K and Mg losses with seepage, but the risk for N losses is low. The sources of N accumulation in decomposing litter at this site require further studies. In the initial phase of litter decomposition, the release of DOC seems to be an important contribution to mass loss.  相似文献   

11.
In many Japanese forests, the forest understory is largely dominated by dwarf bamboo (Sasa) species, which compete with overstory vegetation for soil nutrients. We studied the rate of leaf litterfall, and decomposition and mineralization of carbon (C) and nitrogen (N) from various components (leaf, root, wood, and rhizome) of overstory and understory vegetation in a young Betula ermanii forest from 2002 to 2004. Total litterfall was 377 g m−2 year−1, of which the overstory vegetation contributed about two thirds. A litter decomposition experiment conducted for 770 days indicated that mass loss of different litter components varied significantly, except for Sasa kurilensis wood and rhizome. Relative decomposition rates were significantly greater in the first growth period (June to October) than the dormant period (November to May) in most cases. Rainfall was the most important abiotic variable, explaining 75–80% of the variability in mass loss rates. Concentrations of ethanol soluble substances and N were significantly positively correlated (r=0.77 to 0.97, P<0.05) with mass loss at an early stage (41 days). The ratios of lignin/N and C/N were found to be negatively correlated with mass loss rates at all stages of litter decomposition. C stock loss was similar to that of mass loss, whereas N stock loss was slower, except for S. kurilensis fine root litter. The evergreen understory species S. kurilensis exhibited greater N use efficiency than B. ermanii, suggesting better competitive ability that might favor the production of a high biomass and invasion under tree species like B. ermanii.  相似文献   

12.
Consistent use of mulches over several years can provide significant N to avocado. Study of a 3-year-old Ventura, California, avocado orchard mulched annually for 3 years with 12–14 Mg ha–1 chipped eucalyptus showed that total N in the mulched soil was double that of the control. Mulched intact soil cores released 53 kg ha–1 more N annually than control treatments. A litterbag study showed that net mineralization of the applied mulch commenced approximately 8.5 months following application. Mulched soils tended to be warmer and moister than control soils and temperatures varied less. Laboratory incubations of mulch and soil layers showed that net mineralization rates (mg kg–1 day–1) were greatest in the lowest decomposed mulch layer, but that more N mineralized overall (g m2) in the soil due to its greater density.  相似文献   

13.
Summary Surface additions of (15NH4)2SO4 were used to measure the immobilization and subsequent movement of exogenous N added to two litter types of contrasting quality (Cornus florida and Quercus prinus). Litterbaskets were used to measure the litter mass loss and N dynamics and to follow the movement of the 15N label through litter, F layer, and soil pools. Half of the litterbaskets of each species were treated with naphthalene to reduce microarthropod densities. The faster decomposing C. florida litter maintained a higher excess atom % 15N, and a greater relative concentration of the labeled input (g 15N g–1) than did Q. prinus litter. In both litter types the excess atom % 15N, relative concentration (g 15N g–1), and absolute amount of label recovered in the litter declined over time. This occurred during a period of net accumulation of total litter N, implying simultaneous release of the initial input and immobilization of N from other sources. The concentration of 15N in the soil increased over time, while the F layer apparently acted as an intermediary in the transfer of 15N from litter to soil. Naphthalene effectively reduced microarthropod numbers in all horizons of the litterbaskets and significantly reduced the decay rates of Q. prinus, but not C. florida litter. Naphthalene did not appear to affect total N dynamics in the litter. However, with all horizons taken together, the naphthalene-treated litterbaskets retained more total 15N than the control litterbaskets. Naphthalene also changed the vertical distribution of 15N within litterbaskets, so that the litter retained less of the 15N-labeled input and the F layer and soil horizons retained more of the labeled input than in control litterbaskets. Our major conclusions are: (1) the N pool of decomposing litter is dynamic, with simultaneous N release and immobilization activating N turnover even during the net accumulation phase; (2) litter quality is an important determinant of immobilization and retention of exogenous N inputs and, therefore, turnover of the litter N pool; and (3) microarthropod activity can significantly affect the incorporation and retention of exogenous N inputs in decomposing litter, although these changes are apparently not reflected in net N accumulation or release during the 1st year of decomposition. However, the naphthalene may have affected microbially mediated N dynamics and this possibility needs to be considered in interpreting the results.  相似文献   

14.
Under semiarid subtropical field conditions, denitrification was measured from the arable soil layer of an irrigated wheat–maize cropping system fertilized with urea at 50 or 100 kg N ha–1 year–1 (U50 and U100, respectively), each applied in combination with 8 or 16 t ha–1 year–1 of farmyard manure (FYM) (F8 and F16, respectively). Denitrification was measured by acetylene inhibition/soil core incubation method, also taking into account the N2O entrapped in soil cores. Denitrification loss ranged from 3.7 to 5.7 kg N ha–1 during the growing season of wheat (150 days) and from 14.0 to 30.3 kg N ha–1 during the maize season (60 days). Most (up to 61%) of the loss occurred in a relatively short spell, after the presowing irrigation to maize, when the soil temperature was high and a considerable NO3-N had accumulated during the preceding 4-month fallow; during this irrigation cycle, the lowest denitrification rate was observed in the treatment receiving highest N input (U100+F16), mainly because of the lowest soil respiration rate. Data on soil respiration and denitrification potential revealed that by increasing the mineral N application rate, the organic matter decomposition was accelerated during the wheat-growing season, leaving a lower amount of available C during the following maize season. Denitrification was affected by soil moisture and by soil temperature, the influence of which was either direct, or indirect by controlling the NO3 availability and aerobic soil respiration. Results indicated a substantial denitrification loss from the irrigated wheat–maize cropping system under semiarid subtropical conditions, signifying the need of appropriate fertilizer management practices to reduce this loss.  相似文献   

15.
Summary Two annual species of Sesbania, S. aculeata and Sesbania sp. PL Se-17, were field evaluated as green manure for wetland rice in an alkaline soil. The two species were raised as a catch crop during summer in a wheat-rice rotation, and added as 24.7 and 20.8 t ha–1 of green matter, 116 and 98 kg N ha–1, respectively, after 45 days of growth. For the optimum green manuring effect on rice grain yield and N uptake, S. aculeata required 5 days of decomposition (after turning in and before rice transplantation), whereas no decomposition period was necessary for Sesbania sp. PL Se-17. The effect on grain yield and N uptake of rice was equivalent to an application of 122 and 78 kg ha–1 of chemical N, for the two species, respectively. There was no residual effect of the green manuring on the soil N status after rice harvest.  相似文献   

16.
In this study, gross nitrogen (N) mineralisation rates were determined in six pasture soils (Fleming, Kairanga, Karapoti, Lismore, Templeton and Waikoikoi) from three different regions of New Zealand. The soils were kept under controlled soil water potential (–10 to –30 kPa) and temperature (12–20°C) conditions in a glasshouse. The gross N mineralisation rates ranged from 0.76 to 5.87 g N g–1 soil day–1 in the six soils and were positively correlated with the amount of amino acid-N (AA-N), ammonia-N (NH3-N), total hydrolysable-N (TH-N), microbial biomass-carbon (MB-C), microbial biomass-N (MB-N), protease activity and organic C and N. A stepwise regression was used to generate equations that could best describe gross N mineralisation rates. Microbial biomass-carbon and AA-N were included in the equation that best described the gross N mineralisation rate:
The total amounts of N mineralised over the 1-year period were equivalent to between 492 and 1,351 kg N ha–1 year–1. Assuming mineralisation continues at a steady state throughout the year, this represents between 12 and 26% of the total organic N mineralised per year in these pasture soils.  相似文献   

17.
The aim of the study was to determine the effect of adding two tropical earthworm species, Rhinodrilus contortus and Pontoscolex corethrurus, to mesocosms on the availability of mineral N (NH4 + and NO3 concentrations), soil microbial biomass (bio-N), and the decomposition rates of three contrasting leaf litter species, in a glasshouse experiment. The mesocosms were filled with forest soil and covered with a layer of leaf litter differing in nutritional quality: (1) Hevea brasiliensis (C/N=27); (2) Carapa guianensis (C/N=32); (3) Vismia sp., the dominant tree species in the second growth forest (control, C/N= 42); and, (4) a mixture of the former three leaf species, in equal proportions (C/N=34). At the end of the 97-day experiment, the soil mineral N concentrations, bio-N, and leaf litter weight loss were determined. Both earthworm species showed significant effects on the concentrations of soil NO3 (p<0.01) and NH4 + (p<0.05). Bio-N was always greater in the mesocosms with earthworms (especially with R. contortus) and in the mesocosms with leaf litter of H. brasiliensis (6 µg N g–1 soil), the faster decomposing species, than in the other treatments (0.1–1.6 µg N g–1). Thus, earthworm activity increased soil mineral-N concentrations, possibly due to the consumption of soil microbial biomass, which can speed turnover and mineralization of microbial tissues. No significant differences in decomposition rate were found between the mesocosms with and without earthworms, suggesting that experiments lasting longer are needed to determine the effect of earthworms on litter decomposition rates.  相似文献   

18.
Summary Mineral-N dynamics have been measured over a period of 3 years in PK- and NPK-treated plots (4 m2) laid out on an area of poorly drained, reseeded, blanket peat in the north of Scotland. Mineral-N, present in the peat almost entirely as NH in4 sup+ , accumulated in winter, reaching 42 kg N ha–1 in the surface 10 cm in April before the application of 112.5 kg N ha–1 as NH4NO3 or urea. In situ incubation of peat cores isolated to prevent leaching, and with grass tops removed, confirmed that net mineralization occurred between November and April, with the greatest rate, 1.2 kg N ha–1 day–1, recorded between March and April. During the period May to early June, immobilization of N predominated and rates of net immobilization ranged between 0.2 and 0.8 kg N ha–1 day–1. This coincided with a poor uptake into herbage, less than 16% of soil mineral N and fertilizer NH4NO3 in June of the first 2 years. The largest counts (most probable number) of ammonifying bacteria in the surface 5 cm were recorded in July for aerobes (27.1×109 litre–1) and August for anaerorbes (7.1×109 litre–1). N fertilizer increased these counts significantly (P<0.05) to 56×109 aerobes and 13×109 anaerobes. During July and August, in 2 out of the 3 years, mineralization predominated over immobilization and mean net rates of up to 0.9 kg N ha–1 were recorded.  相似文献   

19.
Summary The development of a number of components was analysed in an agro-ecosystem study with four cropping regimens, barley without and with N fertilization, grass ley, and lucerne. A great variation in N inputs (1–39 g N m-2 year-1) and cropping systems produced a variation in primary production (260–790 g C m-2 year-1) and input of organic material to the soil (150–270 g C m-2 year-1). This was reflected in variations of total soil animal biomass (1.6–5.1 g C m-2) and in variations in the abundance of various animal groups, nematodes (5.6–9.8×106m-2), micro- (2.6–4.8×10-4 m-2), and macroarthropods (0.9–4.2×103 m-2). In contrast, total bacteria, fungi, flagellates, and amoebae varied quite independently of the organic matter input. Mineralization processes covaried more with C and N inputs and total animal biomass than with microbial biomass. it is suggested that the rather constant microbial biomass was a result of an adjustment in the grazing pressure of microbial-feeding animals to the level of microbial production.Dedicated to the late Prof. Dr. W. Kühnelt  相似文献   

20.
We studied the dynamics of microbial C, N, and P in soil cropped with rice (Oryza sativa) and lentils (Lens culinaris) in a dryland farming system. The crop biomass and grain yield were also studied. The microbial biomass and its N and P contents were larger under the lentil than under the rice crop. Microbial nutrients decreased as the crops grew and then increased again. Farmyard manure and NPK fertilizer applications increased the level of microbial nutrients, crop biomass, and grain yield by 35–80%, 55–85%, and 74–86%, respectively. However, these applications had no significant effect on most of the soil physicochemical properties in the short term. The microbial biomass was correlated with the crop biomass and grain yield. The calculated flux of N and P through the microbial biomass ranged from 30–45 and 10–19 kg ha-1 year-1, respectively. Cultivation of a cereal crop followed by a leguminous crop sustains higher levels of microbial nutrients and hence greater fertility in impoverished tropical arable soils. The soil microbial biomass appears to contribute significantly to crop productivity by releasing nutrients, and applications of manure, either alone or with fertilizers, promote this effect more strongly than the application of NPK fertilizers alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号