首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
黑土农田大豆产量形成过程的模拟验证   总被引:5,自引:1,他引:4  
以中国科学院海伦农业生态站长期定位水肥耦合试验数据为依据,模拟大豆产量形成过程。首先建立大豆品种遗传属性数据库和相应的模型参数,利用DSSAT模型系列中的CropGro-Soybean模型,对大豆品种遗传属性、作物产量和生长过程中土壤水分进行了模拟验证。模拟结果表明,CropGro-Soybean模型能够准确地模拟大豆生育期,相对误差在-2%~3%之间,均方根误差RMSE为2.3。对不同年际不同田间处理的大豆产量模拟结果分析的相对误差在-7%~9%之间,均方根误差RMSE为75.9,模型性能指数EF为0.8。模型对不同层次土壤水分变化的模拟效果也较好。  相似文献   

2.
农田水盐运移与作物生长模型耦合及验证   总被引:6,自引:3,他引:3  
合理定量描述土壤水盐动态及作物生长过程对于干旱灌区制定适宜的农业用水措施具有重要意义。该文以SWAP(soil water atmosphere plant)模型为基础,采用变活动节点法实现了对土壤融化期的水盐运移模拟,并在根系吸水计算中引入了基于S形函数的水盐胁迫计算方法,以修正原SWAP模型对根系吸水的模拟。进一步嵌入了参数与输入数据较少且可以模拟作物生长过程及实际产量的EPIC(environmental policy integrated calculator)作物生长模型,构建了改进的农田尺度土壤水盐动态与作物生长耦合模拟模型-SWAP-EPIC。分别采用宁夏惠农灌区春小麦和春玉米田间试验数据,对SWAP-EPIC模型田间适用性进行了检验。对比分析各层土壤水分与盐分浓度、作物生长指标(叶面积指数、地上部生物量)的模拟值与实测值,结果表明:春小麦和春玉米试验中土壤水分的平均相对误差MRE和均方根误差RMSE均接近于0且模型Nash效率系数NSE值趋近于1,水分模块模拟精度较高,盐分浓度模拟存在略微差异但总体上一致性较好,并且作物生长指标匹配良好;同时,模拟的产量和蒸散发均较为接近实际值,春小麦和春玉米产量模拟相对误差分别为4.9%和3.3%。综上,该文改进的SWAP-EPIC模型可良好地应用于寒旱区农田尺度土壤水盐运移与作物生长耦合模拟。  相似文献   

3.
一个稻田土壤-作物体系的氮素循环模型   总被引:1,自引:0,他引:1  
唐昊冶  韩勇  黄俏丽 《土壤》2006,38(6):717-726
模型为一维模型,其主要框架由土壤水分运动、N素迁移转化以及水稻生长3个模块组成。在土壤水分运动模拟中,考虑了可能存在的饱和流和非饱和流;在N素运移中将土壤中的NH4 、NO3-和尿素视为土壤溶质,用对流弥散方程模拟其在垂直方向上的运移;在N素转化过程中考虑了尿素水解、有机N矿化、氨挥发、硝化、反硝化以及NH4 的吸附这6个过程;对于作物生长的模拟,选用了ORYZA水稻生长模型,并结合田间实验修改了其中一些参数。使用该模型对3年的田间试验进行了模拟验证,对于土壤中矿质态N素以及水稻生长的模拟,都得到了较好的模拟结果,通过与实测值的分析比较,耕作层的NH4 -N浓度,水稻各部分的生物量模拟值与实测值的吻合都达到了显著水平。  相似文献   

4.
以甘肃省西峰市南小河沟小流域径流场为研究对象,利用BP神经网络对4种植被类型的径流小区(农田、林地、人工草地和天然荒坡)进行了产流产沙量模拟和预测。其模拟产流量的相对误差分别为0.2%~5.7%,0.1%~2.5%,0.7%~2.9%和0.1%~3%;模拟产沙量的相对误差分别为0.1%~3.2%,0.2%~3.1%,0.6%~4.2%和0.2%~2.7%。预测农地、林地、草地和天然荒坡产沙量最大相对误差分别为-11%,14%,-14.6%,18%,产流量最大相对误差分别为10.9%,27.3%,15%,26.3%。结果表明,BP神经网络预测产流产沙的效果较好,对径流小区运用神经网络进行蓄水拦沙指标分析是可行的。  相似文献   

5.
针对苜蓿生长模型ALFAMOD在动态水分平衡模拟和氮素平衡模拟方面的不足,提出一种基于水氮因子的紫花苜蓿生长模拟模型(alfalfa growth simulation model based on water and nitrogen factors,ALFSIM-WN)。该模型以宁夏引黄灌区紫花苜蓿为研究对象,采用模块化设计方法,划分为作物动态模拟子模型、水分平衡模拟子模型和氮素平衡模拟子模型,对紫花苜蓿的产量进行模拟和估算。通过连续2 a(2016-2017)的田间试验,获取气象数据、土壤数据和田间管理数据,利用2016年数据确定了模型参数,并预测了2017年4茬次紫花苜蓿生长期、叶面积指数、土壤水分动态和产量,对模型模拟值和实际观测值进行了对比。结果表明:宁夏引黄灌区紫花苜蓿每年能收割3~4茬,与当地以饲草收割为目的的生长期相符,综合2017年4茬次数据发现模型模拟叶面积指数的平均相对误差在2.3%~17.6%,模拟土壤水分动态的平均相对误差在2.3%~17.6%,产量预测数据的平均相对误差在1.7%~16.2%。叶面积指数、土壤水分动态和产量的均方根误差分别在0.09~0.44、0.009~0.039 cm3/cm3和0.3~2.3 t/hm2。模型模拟精准度较高,说明该模型在宁夏引黄灌区适用性良好,可以作为一个有效的紫花苜蓿生长模拟预测工具在饲草种植中应用。  相似文献   

6.
从作物水分胁迫系数的基本概念和FAO56的相关公式出发,考虑土壤临界含水量的时间变化,推导出了一个水分胁迫系数计算公式,该公式比较全面地表达了土壤供水能力、作物潜在腾发量与作物所受水分胁迫之间的关系。将该公式和另一幂函数公式应用于山西潇河冬小麦田间水量平衡分析,两者对土壤水分的动态模拟都达到了较高的精度,水量平衡计算结果也比较合理,模型的参数基本一致。与幂函数公式建立的模型相比,新公式建立的田间水量平衡模型具有待定参数少、求解结果稳定、易于收敛的优点,同时还能得到0~1 m土壤临界含水量变化曲线。该曲线反映了作物在土壤水分消退的过程中遭受不同程度水分胁迫的可能性大小,并得出土壤临界含水量在冬小麦生长前期较小,中期最大,后期较大。在返青~收获期,0~1 m深土壤临界含水量最大为290 mm,最小为215 mm,平均值为247 mm。这些结论对于农业用水管理具有一定的参考价值。  相似文献   

7.
滴灌夏玉米土壤水分与蒸散量SIMDualKc模型估算   总被引:2,自引:1,他引:1  
为研究西北半干旱地区作物蒸腾和土壤蒸发规律,以及土壤蒸发量占蒸散量的比例(简称蒸发占比),开展2 a夏玉米滴灌控水试验,设置正常灌水(W1)、适度水分亏缺(W2)和中度水分亏缺(W3)3个灌水水平.采用W2实测土壤水分数据对SIMDualKc模型进行参数率定,并采用W1和W3实测土壤水分数据对模型进行验证;进一步基于SIMDualKc模型对不同水分供应的土壤水分胁迫系数、土壤蒸发量、植株蒸腾和蒸散量进行定量模拟分析.结果表明,SIMDualKc模型可以较好地模拟西北半干旱区滴灌夏玉米不同水分供应条件下的土壤水分动态变化过程,实测值与模型预测值有较好的一致性(R2>0.88,RMSE<5%);夏玉米生长期,模型能较好地估算不同水分供应的土壤水分胁迫系数、土壤蒸发量和植株蒸腾.土壤蒸发主要集中在生育前期,而生育中期较低,后期略微升高.植物蒸腾主要集中在快速生长期和生长中期,整个生育期呈先增大后减小的趋势.蒸散量随着土壤蒸发和植物蒸腾的变化而变化,前期主要受土壤蒸发的影响,快速生长期、生长中期和后期主要受植物蒸腾的影响.Wl~W3处理土壤蒸发量为78.1~100.2 mm,植株蒸腾为221.8~293.3 mm,蒸散量为299.3~383.0 mm,蒸发占比为24.1%~28.7%.研究可为西北半干旱地区制定合理的夏玉米滴灌制度和灌溉决策提供理论依据.  相似文献   

8.
土壤水氮动态及作物生长耦合EPIC-Nitrogen2D模型   总被引:2,自引:1,他引:1  
为计算农业区不同作物生长条件下土壤水氮迁移转化过程,该文基于Erosion/Productivity Impact Calculator(EPIC)作物模型建立了作物根系生长子模块,将其进行有限元数值离散,与土壤氮素迁移转化模型Nitrogen2D耦合,使模型能计算作物生长条件下土壤水氮迁移转化过程。该作物生长模块可计算多种胁迫下作物根系对土壤水分和氮素的动态吸收速率,及作物收获时的生物量和吸氮量。采用武汉大学灌溉排水试验场冬小麦生长条件下土壤水氮试验数据对模型进行了率定,并用于土壤水氮分布和作物生物量预测,土壤含水率、氮素的模拟值与实测值的一致性系数分别为0.86~0.97、0.52~0.98,Nash效率系数为0.59~0.90(含水率)、0.44~0.93(土壤氮素),说明模拟结果与实测值吻合度较高。同时,分别采用该文的作物生长模块和简单根系吸收模块计算根系吸氮过程,结果显示,简单根系吸收模型会显著高估作物吸氮量,而作物生长模型则由于考虑了根系生长和各环境因子的胁迫作用,计算结果更符合作物实际吸氮过程,计算的根系吸氮量相对均方根误差为3.4%~46%。  相似文献   

9.
通过采集土壤溶液并分析其硝态氮(NO3^--N)含量,结合水量平衡方法,研究了华北太行山前平原小麦-玉米轮作农田在当前农民普遍采用的农业管理措施下土壤NO3^--N迁移、累积特征,计算了深层土壤水分渗漏与NO3^--N淋溶损失量。结果表明,土壤水分渗漏、NO3^--N的分布及其淋溶损失存在着明显的时空变异性,土壤水分的深层渗漏和NO3^--N的淋溶损失发生在玉米生长期间施肥灌水或降雨之后。在1998/1999和1999/2000两个作物轮作年中,土壤水分的深层渗漏损失分别为33~48mm(平均39mm)和90~92mm(平均90.7mm),分别占降水+灌溉总量的10%和19%;淋溶到根区之下的NO3^--N量(包括来自土壤和肥料的N)分别为N12kg hm^-2(范围N6~17kg hm^-2)和N61 kg hm^-2(范围N30~84kg hm^-2),分别占施入肥料量的1.4%~4.1%和7.3%~20.3%。在玉米生长期间有较大潜力可调控灌溉与肥料用量,以提高水肥利用效率。  相似文献   

10.
基于SHAW模型的黄土高原半干旱区农田土壤水分动态模拟   总被引:5,自引:1,他引:4  
黄土高原半干旱区土壤蒸发强烈,准确地掌握土壤水分动态对于旱地农业水分管理至关重要。应用基于物理基础的一维水热耦合SHAW(The Simultaneous Heat and Water)模型,模拟了陕西子洲岔巴沟流域1964~1967年土壤水分和土壤蒸发的动态特征,以及神木六道沟流域2006年坡地和梯田土壤水分变化。结果表明,除表层土壤水分模拟结果偏差较大,其他土层模拟值与实测值基本吻合,模拟期土壤水分模拟的相对平均绝对误差(Relatively Mean Absolutely Error,RMAE)为5.2%~11.4%。1964~1967年土壤累积蒸发量模拟值与实测值平均相对偏差为0.8%~6.1%,土壤蒸发的模拟值与实测值较为一致。因此,SHAW模型可以用于黄土高原半干旱区农田土壤水分动态规律研究。  相似文献   

11.
采用模拟增降温法研究了温度变化对麦田地温、土壤水分变化和水分利用效率的影响。结果表明:模拟增温麦田、降温麦田在全生育期5 cm平均地温分别较常规麦田平均升高0.85℃和降低2.57℃,其中模拟增温麦田的增温效应以冬季>秋季>春季,模拟降温麦田的降温效应以春季>秋季>冬季;模拟增温麦田、降温麦田在全生育期5 cm土层的平均容积含水率分别较常规麦田降低3.76%、提高4.84%。对模拟增温麦田、降温麦田和常规麦田0-200 cm土层水分变化研究表明,模拟增温麦田和常规麦田(除成熟期外)各生育期的贮水量均低于模拟降温麦田;全生育期0-200 cm土层土壤耗水量模拟增温麦田大于模拟降温麦田和常规麦田,其中0-100 cm土层耗水量占0-200 cm土层耗水量的比例模拟增温麦田(55.72%)和常规麦田(55.14%)均低于模拟降温麦田(63.45%),而100-200 cm土层耗水量占0-200 cm土层耗水量的比例模拟增温麦田(44.28%)和常规麦田(44.86%)麦田均高于模拟降温麦田(36.55%);水分利用效率模拟增温麦田低于常规麦田和模拟降温麦田。研究结果可为气候变暖对小麦生产系统的影响提供理论依据和技术支撑。  相似文献   

12.
作物模型在农业生产管理和决策中发挥着重要作用,而物候期模拟是作物模型正确模拟作物生长发育和产量形成过程的基础。作物模型模拟物候发育的常用算法一般是基于积温的计算,同时也考虑光周期和春化作用的影响,但是水分胁迫对物候发育的次级影响却较少被考虑在内。该研究以连续2季(2013-2014和2014-2015)的遮雨棚下土柱试验和连续3季(2012-2013、2013-2014和2014-2015)的遮雨棚下大田试验数据和前人研究成果为基础提出了冬小麦物候期对水分胁迫的响应机制理论假设,并以土壤相对有效含水率为水分胁迫指标校正冬小麦物候期水分胁迫响应函数。该研究以2014-2015生长季土柱试验各处理试验数据来建立冬小麦物候期水分胁迫响应函数,确定发育加速点A、发育减速点D和发育停止点S所对应的相对有效含水率值分别为0.30、0.10和0。结果发现拔节期和开花期模拟值和观测值之间的均方根误差(root mean square error,RMSE)分别为0.8和1.7 d,绝对相对误差(absolute relative error,ARE)分别低于0.68%和2.09%。然后用2013-2014生长季土柱试验各处理数据进行验证,结果发现拔节期和开花期模拟值和观测值之间的RMSE分别约为0.9和1.1 d,ARE分别在1.37%和1.68%以下。最后再用3年独立大田试验数据对上述修正后的冬小麦物候期算法进行验证,结果发现开花期和成熟期的模拟值与观测值之间的RMSE分别约为2.4和2.0 d,ARE分别低于4.21%和2.67%;与DSSAT-CERES-Wheat模型的模拟结果进行比较,发现修正算法能反映出水分胁迫对冬小麦物候期造成的差异(有提前也有推迟),而DSSAT-CERES-Wheat模型无法体现这种差异,且开花期和成熟期的模拟值与观测值之间的RMSE分别约为4.0和5.5 d,误差最大分别为8和6 d。这表明校正后的冬小麦物候期算法模拟精度得到了较大提高,能在一定程度上描述和量化水分胁迫对冬小麦物候期的影响机制,可用来模拟不同水分胁迫条件下不同品种冬小麦的物候期。  相似文献   

13.
肥料和稻草氮利用率的三年定位研究   总被引:1,自引:0,他引:1  
王胜佳  王家玉  陈义 《土壤通报》2004,35(6):763-766
对氮肥和稻草氮的利用率进行了3年6季同位素15N田间定位研究。结果表明,首季单季水稻对氮肥的利用率为37.02%,050cm土壤中15N的残留率为25.81%。经过连续3年6季的种植,作物肥料N的累计回收率分别为40.15(秸杆还田)41.63%(秸杆不还田),050cm土壤中15N的残留率仍达到23.62(秸杆不还田)28.33%(秸杆还田)。在不施氮肥条件下,小麦对稻草氮的吸收率为4.46%,第二季单季稻对稻草氮的吸收率为4.78%。5季作物累计吸收稻草氮11.76%,而土壤残留率为70.37%。  相似文献   

14.
改进CERES-Rice模型模拟覆膜旱作水稻生长   总被引:1,自引:2,他引:1  
覆膜旱作是节水稻作生产体系的重要措施之一,采用CERES-Rice模型模拟覆膜旱作水稻生长需另外考虑覆膜的增温效应和根系层土壤水分布差异及由此所带来的影响。该文借鉴部分旱地作物的相关研究成果,对原CERES-Rice模型中的积温和土壤温度、蒸发和土壤水分胁迫等模拟计算过程进行了改进,并进一步通过2个水稻生长季的田间试验予以验证。试验于2013、2014年在湖北房县进行,共涉及淹水(对照)、覆膜湿润栽培和覆膜旱作共3个水分处理,采用原模型和改进模型分别对2个生长季、2个覆膜处理的生育期、叶面积指数与地上部干物质质量的变化过程及产量进行模拟。结果表明:原CERES-Rice模型难以准确刻画覆膜旱作水稻的生长发育过程,经改进后,模拟效果大大改善,可有效反映环境变化(水分、温度)对覆膜水稻生育进程的影响和产量形成,维持生育期与产量模拟的相对误差在15%以内;覆膜水稻叶面积指数的动态模拟基本满足要求,其均方根差≤1.54 m~2/m~2、相对均方根差≤27%、建模效率≥0.85;对覆膜水稻地上部干物质质量变化过程的模拟也呈现出较好的效果,均方根差和相对均方根差分别小于1 490 kg/hm~2、16%,建模效率则高于0.95。总体而言,经改进后的CERES-Rice模型基本可满足要求,较好地用于模拟覆膜旱作水稻的生长发育规律。  相似文献   

15.
基于SIMDualKc模型估算西北旱区冬小麦蒸散量及土壤蒸发量   总被引:1,自引:5,他引:1  
为研究西北旱区冬小麦蒸散和土壤蒸发规律,以及土壤蒸发比例与其影响因子的关系,利用2 a冬小麦小区控水试验实测数据,对SIMDual Kc模型进行了参数校正和验证,对比大型称重式蒸渗仪的实测蒸散量值(或水量平衡法计算值)与模型模拟值。用建立的模型模拟精度评价标准对模拟值和实测值的误差进行评价。用经参数校验的模型模拟冬小麦农田土壤蒸发,并与微型蒸渗仪的实测值进行对比。基于通径分析方法研究气象因子(最低气温、最高气温、平均相对湿度、2 m处风速、太阳辐射量)和作物因子(地面覆盖度)与土壤蒸发比例的关系。结果表明,该研究建立的模型模拟精度评价标准能够较为全面地评价模型精度;SIMDual Kc模型可以较好地模拟西北旱区不同灌溉制度下冬小麦蒸散量和土壤蒸发量的变化过程,且在模拟长时段累积值时具有较高精度;拔节-灌浆期是冬小麦的需水关键期,冬小麦全生育期土壤蒸发比例呈现出生长中期生长后期快速生长后期生长初期的规律;灌水仅在短时间内影响土壤蒸发,地面覆盖度是影响土壤蒸发的最主要因子;在实测数据不充足的情况下,可以将地面覆盖度和蒸散量作为输入变量,用该研究确定的土壤蒸发比例与地面覆盖度的回归模型计算土壤蒸发量,该模型在计算不同水分条件下冬小麦农田土壤蒸发量时表现出较高的计算精度,决定系数在0.721~0.902之间,可以作为计算土壤蒸发量的简便方法。研究可为西北旱区冬小麦农田节水和灌溉决策提供理论依据。  相似文献   

16.
根据中国科学院栾城农业生态系统试验站2006-2007年小麦-玉米生长季实测的作物水氮动态变化数据,进行CERES-Wheat和CERES-Maize模型在华北地区冬小麦和夏玉米作物水氮过程模拟能力的验证及参数敏感性分析。结果表明,模型模拟的冬小麦生长季土壤含水量、土壤硝态氮含量、植株含氮量与实测值的相关系数分别为0.46、0.74和0.68,夏玉米则依次为0.95、0.62和0.72。敏感性分析发现土壤含水量和土壤硝态氮含量对土壤参数变化比较敏感,植株含氮量则受遗传参数影响显著。当田间持水量相对变化+10%时,冬小麦和夏玉米的土壤含水量相对变化率分别为+7.5%和+8.8%,冬小麦和夏玉米土壤硝态氮含量的相对变化率分别为+12.0%和+17.9%。叶热间距PHINT对冬小麦植株含氮量有负效应,PHINT相对变化+10%时冬小麦植株含氮量的相对变化率为-11.5%;夏玉米植株含氮量对出苗-幼苗末期所需温时(P1)较为敏感,P1变化+10%时夏玉米植株含氮量相对变化+9.3%。  相似文献   

17.
麦稻两熟地区不同埋深对还田秸秆腐解进程的影响   总被引:26,自引:1,他引:26  
为探讨稻麦两熟地区还田秸秆的腐解进程,用尼龙网袋法研究了麦稻秸秆不同埋深(0、7、14.cm)对还田秸秆腐解及C/N比的影响。结果表明,在麦田,埋深14.cm的秸秆腐解速度最快,覆盖在表层较慢。稻田由于有水层的作用和高温高湿的环境,秸秆腐解比麦田快,覆盖在表层比埋入土中的略慢。麦季稻秸覆盖还田一季后秸秆残留率在60%左右,埋入土中的残留率在40%左右;稻季麦秸覆盖还田一季后秸秆残留率在25%左右,而埋在土中的残留率在20%左右。随着还田秸秆的腐解,秸秆含氮量逐渐增加,全碳含量下降,秸秆C/N比降低。麦季稻秸覆盖C/N比较高,而稻季麦秸覆盖的C/N比较低。一季后麦田稻秸的C/N比平均在30左右,稻田麦秸在15以上,比土壤腐殖质的C/N比高,说明种植一季作物后,还田的秸秆尚未完成腐殖化过程。  相似文献   

18.
农业生产管理系统模型输入参数多,参数率定过程十分耗时费力,大大限制了其推广应用。该研究以华北平原2 a的冬小麦-夏玉米田间试验观测数据为基础,使用PEST(parameter estimation)参数自动优化工具对土壤-作物-大气系统水热碳氮过程藕合模型(soil water heat carbon and nitrogen simulator,WHCNS)的土壤水力学参数、氮素转化参数和作物遗传参数进行自动寻优,同时计算分析模型参数的相对综合敏感度,并将优化结果与土壤实测水力学参数和试错法的模拟结果进行比较。参数敏感度分析结果表明,18个模型参数的相对综合敏感度较高,其中土壤水力学参数普遍具有较高的敏感度,以饱和含水率敏感度最高;作物参数中,作物生长发育总积温和最大比叶面积具有较高的综合敏感度;而氮素转化参数的敏感度远低于土壤水力学参数和作物参数。评价模型模拟效果的统计性指标(均方根误差、模型效率系数和一致性指数)表明,PEST法比实测水力学参数的模拟精度有所提高,其中土壤含水率、土壤硝态氮含量、作物产量和叶面积指数的均方根误差分别降低了61.8%、23.5%、73.6%和23.3%。同时PEST法比试错法对土壤水分和作物产量的模拟精度也有较大提高,但对土壤氮素和叶面积指数的模拟精度提高不明显。由于该方法大大节约了模型校准时间,在较短的时间内获得了明显高于试错法的模拟精度,因此PEST软件在WHCNS模型参数自动优化中是一个值得推广的工具。  相似文献   

19.
基于水分供需关系的冬小麦夏玉米节水灌溉模式研究   总被引:1,自引:0,他引:1  
节水灌溉是解决水资源短缺问题的重要途径之一。在长期田间试验的基础上, 运用Hydrus-1D模型对研究区冬小麦 夏玉米轮作条件下的田间水分运移过程进行了模拟分析, 探讨适宜的节水灌溉模式。结果表明, 表征土壤水分实测值与模拟值精度关系的Nash-Suttcliff效率系数Ens为0.652~0.903, 均大于0.5, 模型效果良好; 在灌水量为520 mm的传统灌溉模式下, 1.6 m土层深层土壤水分无效渗漏量为189 mm, 占地表总入渗补给水量的22.3%, 土壤水分无效渗漏大, 且与降雨和灌溉关系密切; 根据作物水分供需状况及土壤水分状况得出夏玉米、冬小麦季的灌溉量分别为50 mm、320 mm, 比传统灌溉模式共节水100 mm。改进后的灌溉模式对于土壤水分渗漏具有良好的控制作用, 土壤水分渗漏峰值明显降低, 根据作物供需与土壤水分状况提出的节水灌溉模式能减少土壤水分渗漏, 提高灌溉水利用效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号