首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bau HJ  Cheng YH  Yu TA  Yang JS  Yeh SD 《Phytopathology》2003,93(1):112-120
ABSTRACT Papaya ringspot virus (PRSV) is a major limiting factor for cultivation of papaya (Carica papaya) in tropical and subtropical areas throughout the world. Although the coat protein (CP) gene of PRSV has been transferred into papaya by particle bombardment and transgenic lines with high resistance to Hawaii strains have been obtained, they are susceptible to PRSV isolates outside of Hawaii. This strain-specific resistance limits the application of the transgenic lines in other areas of the world. In this investigation, the CP gene of a local strain isolated from Taiwan, designated PRSV YK, was transferred into papaya via Agrobacterium-mediated transformation. A total of 45 putative transgenic lines were obtained and the presence of the transgene in papaya was confirmed by polymerase chain reaction amplification. When the plants of transgenic lines were challenged with PRSV YK by mechanical inoculation, they showed different levels of resistance ranging from delay of symptom development to complete immunity. Molecular analysis of nine selected lines that exhibited different levels of resistance revealed that the expression level of the transgene is negatively correlated with the degree of resistance, suggesting that the resistance is manifested by a RNA-mediated mechanism. The segregation analysis showed that the transgene in the immune line 18-0-9 has an inheritance of two dominant loci and the other four highly resistant lines have a single dominant locus. Seven selected lines were tested further for resistance to three PRSV heterologous strains that originated in Hawaii, Thailand, and Mexico. Six of the seven lines showed varying degrees of resistance to the heterologous strains, and one line, 19-0-1, was immune not only to the homologous YK strain but also to the three heterologous strains. Thus, these CP-transgenic papaya lines with broad-spectrum resistance have great potential for use in Taiwan and other geographic areas to control PRSV.  相似文献   

2.
Global papaya production is severely affected by papaya ringspot disease caused by Papaya ringspot virus (PRSV). Management of this potyvirus is challenging, due to 1) its non-persistent transmission by numerous aphid species and 2) the diversity of PRSV strains that exists within a country or between different geographical regions. Papaya cultivars with transgenic resistance have reduced the impact of the disease. There are no effective alternatives to transgenic resistance available in areas where disease pressure is high. In Hawaii, transgenic papayas such as “SunUp” and “Rainbow” have remained resistant to PRSV more than two decades saving the commercial papaya industry. Following the success in Hawaii, researchers from other countries have focused on developing PRSV-resistant transgenic papaya. These transgenic cultivars often demonstrated an initial transitory resistance that was ultimately overcome by the virus. For other cases, resistance was inconsistent. That is, some transgenic lines were resistant while others were not. Transgenic cultivars are now losing PRSV-resistance for various reasons in China and Taiwan. In this review, we present an update on work with transgenic papaya with resistance to PRSV. The focus is on factors affecting transgenic resistance in papaya and our attempt to explain why the Hawaiian scenario of complete and durable resistance has not been replicated in other regions. The utilization of more recent technologies to the development of virus resistance in papaya is also discussed.  相似文献   

3.
The coat protein (CP) gene mediated transgenic resistance is found to be the best approach for protecting papaya plants against the destructive disease caused by Papaya ringspot viruses(PRSV). In order to study the variability of PRSV and the potential threat to the CP-transgenic resistance, five virus isolates were collected from transgenic plants of papaya line 16-0-1, which carry the CP gene of the typical mosaic strain of Taiwan PRSV YK, in an approved test field and fourteen from untransformed papaya plants in different areas of Taiwan. The results of biological, serological, and molecular characterization indicated that all isolates are related to PRSV YK. Among them, the isolate 5--19 from the transgenic line and the isolates CS and TD2 from untransformed papaya were able to overcome the YK CP gene-mediated resistance of papaya lines 18--2--4, 17-0-5, and 16-0-1, which provide high degrees of resistance to different geographic PRSV strains of Hawaii (HA), Mexico (MX), and Thailand (TH). These three isolates were also able to cause symptoms on untransformed papaya plants more severe than those induced by YK. In addition to the host reactions, the variability of the collected 19 isolates was also analyzed and compared with YK and other geographic strains by heteroduplex mobility assay (HMA) and sequence analyses. The results of HMA indicated that the CP genes of isolates 5--19 and TD2 are more divergent than those of other isolates when compared with YK. However, sequence analyses of the transgenic-resistance overcoming isolates 5-19, CS, and TD2 revealed that their CP coding regions and the 3 untranslated regions (UTRs) share nucleotide identities of 93.9–96.6% and 94.2–97.9% with those of YK, respectively; whereas the other geographic strains of HA, MX, and TH that could not overcome the transgenic resistance share lower nucleotide identities of 89.8–92.6% and 92.3–95.3% with those of YK, respectively. Our results indicate that the ability for overcoming the transgenic resistance is not solely correlated with higher degrees of sequence divergence from the transgene. The possible mechanism for overcoming the transgenic resistance and the potential threat of these PRSV strains to the application of the transgenic papaya lines carrying PRSV YK CP gene are discussed.  相似文献   

4.
Resistance tests were made on seedlings of transformed lines of Nicotiana benthamiana which contain a transgene encoding the coat protein (CP) gene of a Scottish isolate of potato mop-top virus (PMTV). This transgene has been reported to confer strong resistance to the PMTV isolate from which the transgene sequence was derived and also to a second Scottish isolate. Plants of lines of the transgenic N. benthamiana were as resistant to two Swedish and two Danish PMTV isolates as to a Scottish isolate, and of five lines tested, greater than 93.5% of transgenic plants were immune. The coat protein gene sequences of these four Scandinavian isolates were very similar to those of the two Scottish isolates. The greatest divergence between the isolates was three amino acid changes and there was less than 2% change in CP gene nucleotide sequence. It is concluded that the PMTV CP transgene used in these experiments could confer resistance against isolates from different geographical areas because it is becoming apparent that the CP genes of PMTV isolates are highly conserved.  相似文献   

5.
6.
利用电镜和酶联免疫法在云南省采集到的5份南瓜病样中检测到番木瓜环斑病毒(Papayaring spot virus,PRSV)。为了进一步从分子水平确定云南省南瓜病毒病原种类,并为下一步转基因育种提供抗性基因,采用反转录PCR(RT-PCR)方法扩增了5个分离物的外壳蛋白(coat protein,CP)基因片段,并克隆到pGEM-T载体中。核苷酸序列测定表明,番木瓜环斑病毒石屏分离物(PRSV-SP)和番木瓜环斑病毒蒙自分离物(PRSV-MZ)的CP基因长873nt,编码290个氨基酸,番木瓜环斑病毒峨山分离物(PRSV-ES)、番木瓜环斑病毒版纳分离物(PRSV-BN)和番木瓜环斑病毒宾川分离物(PRSV-BC),3个分离物CP基因长867nt,编码288个氨基酸。PRSV5个分离物核苷酸序列的同源性在94%以上,氨基酸序列的同源性在96%以上。与国内外17个分离物相比,核苷酸序列同源性为89.6%~98.7%,氨基酸序列同源性为86.5%~99.6%。其中PRSV-SP和来自于越南分离物PRSV-V47无论是核苷酸序列,还是氨基酸序列同源性都达到了最高,而5个分离物与来自于巴西(PRSV-BR)、美国(PRSV-USA)、墨西哥(PRSV-Y)核苷酸序列同源性均低于90%。  相似文献   

7.
番木瓜抗环斑病毒突变体抗性遗传及RAPD标记   总被引:10,自引:0,他引:10  
 60Coγ-射线处理番木瓜种子,从诱变一代中筛选到1株耐环斑病毒(PRSV)的变异植株(M1),其侧芽组培后代(VM1)部分植株也表现出了耐病性,以VM1为母本进行回交,人工接种病毒鉴定回交后代(BM2)的抗病性,结果为:在出自部分回交果实的BM2群体中,包含有对PRSV Ys和Vb株系具抗性的植株,抗感分离比为1:1,但未发现抗Sm株系的植株;BM2抗病两性株自交或以其为母本进行回交,分别获得诱变第三代(M3)及回交诱变第三代(BM3),人工接种PRSVYs株系,结果表明,BM3抗感分离比也为1:1,因而认为辐射处理突变产生了具PRSV株系专化性的显性抗病基因,命名为Rys;但M3抗感分离比不符合显性单基因3:1理论值,认为是单倍体选择的结果。运用BSA法,在BM2中寻找到一个与抗病性密切相关的RAPD标记,经在BM2、M3及BM3抗感群体中检验,可作为抗病育种的辅助选择标记。Rys是番木瓜栽培种中发现的第一个抗PRSV基因。  相似文献   

8.
CAP-34, a protein from Clerodendrum aculeatum inducing systemic antiviral resistance was evaluated for control of Papaya ringspot virus (PRSV) infection in Carica papaya. In control plants (treated with CAP-34 extraction buffer) systemic mosaic became visible around 20 days that intensified up to 30 days in 56% plants. During this period, CAP-34-treated papaya did not show any symptoms. Between 30 and 60 days, 95% control plants exhibited symptoms ranging from mosaic to filiformy. In the treated set during the same period, symptoms appeared in only 10% plants, but were restricted to mild mosaic. Presence of PRSV was determined in induced-resistant papaya at the respective observation times by bioassay, plate ELISA, immunoblot and RT-PCR. Back-inoculation with sap from inoculated resistant plants onto Chenopodium quinoa did not show presence of virus. The difference between control and treated sets was also evident in plate-ELISA and immunoblot using antiserum raised against PRSV. PRSV RNA was not detectable in treated plants that did not show symptoms by RT-PCR. Control plants at the same time showed a high intensity band similar to the positive control. We therefore suggest that the absence/delayed appearance of symptoms in treated plants could be due to suppressed virus replication.  相似文献   

9.
Papaya ringspot virus is an RNA virus that belongs to the genus Potyvirus, family Potyviridae and affects both papaya and cucurbits, causing great economic losses. PRSV isolates are divided into biotypes P and W; both biotypes naturally infect plants in the family Cucurbitaceae, whereas the P type also naturally infects papaya (Carica papaya L). In the present study, we report the full-length genome sequence of two PRSV-P isolates sampled from the Campo Hermoso (PRSV-CH) and Villa del Rosario (PRSV-VR) localities in Norte de Santander, Colombia. The genomes of these PRSV isolates are 10,326 nt in length and have a predicted ORF of 3344 aa. The identity among Colombian PRSV isolates is 96.9% and 97.3% at the nucleotide and deduced amino acid levels, respectively. PRSV isolates from China had the lowest identity at 78.3% and 89.2% (nucleotide-amino acid), whereas the highest identities were detected in PRSV isolates from Mexico, Venezuela and Hawaii. At the polyprotein level, the amino acid composition surrounding the active polyprotein cleavage sites differ in the Colombian PRSV sequences. The predicted cleavage site in P1/HC-Pro is LEQY/N – LEQY/S instead of MEQY/N. Both of the Colombian PRSV isolates have a putative recombination event in the P1 coding region, which is common in all PRSV isolates from the American continent. The new full-length PRSV sequences from Colombia provide a better understanding of the dynamics of papaya ringspot virus infections in papaya in Colombia and worldwide.  相似文献   

10.
利用RNA介导的抗病性获得高度抗马铃薯Y病毒的转基因烟草   总被引:29,自引:8,他引:21  
 以马铃薯Y病毒坏死株系(PVYN)的RNA为模板,应用反转录-聚合酶链式反应(RT-PCR)方法,扩增出长度为801 bp的非翻译的马铃薯Y病毒外壳蛋白基因。将扩增的片段克隆到pBSK的BamHI和KpnI之间并进行了序列测定。用BamHI和KpnI从重组克隆载体上切下该基因并插入到质粒pROKII内得到植物表达载体pPVYCP。通过根癌农杆菌(LBA4404)介导的方法转化烟草NC89,经卡那霉素抗性筛选、PCR和Southern blot检测,获得82株转基因植株。Northern blot和Western blot分析表明,转基因植株只在RNA水平上得到了表达。抗病性试验表明转基因植株之间抗性水平存在着差异,其中有7株是对PVYN高度抗病性的植株。转基因植株抗病特异性试验初步表明,对PVYN表现高度抗病的植株对PVYO也具有高度抗病性。  相似文献   

11.
12.
Orchard and garden papaya crops grown in 47 Cuban municipalities were surveyed from 2008 to 2013, revealing the widespread distribution of papaya ringspot virus (PRSV) in Cuba. Phylodynamic analyses performed with the partial coat protein gene of all Cuban PRSV-P isolates (34 sequences) and 107 sequences of isolates from the American continent and the Caribbean islands showed a most recent common ancestor in 1942 (95% highest posterior density, HPD 95% = 1911–1967). The substitution rate was estimated to be 7.7 × 10−4 substitutions per site per year (HPD 95% = 4.6 × 10−4 to 1.1 × 10−3), which is equivalent to those detected in other RNA viruses. Demographic reconstruction of PRSV showed that viral diversity increased in the 1985–1990 period, which coincides with the implementation of extensive production practices. Moreover in Cuba, viral dispersion occurred from Mexico and other unknown ancestral locations. The spatiotemporal diffusion analysis proposed Mexico as an ancestral area for the origin of diversification in the American continent and suggests new dispersion events between American and Caribbean isolates. The observed widespread distribution, clear geographic grouping of Cuban isolates, virus growth and genetic diversity provide strong evidence of the PRSV dispersion patterns, which has implications for the control strategies of PRSV.  相似文献   

13.
14.
Tissue cultures of GAF30/Park oats were biolistically co-transformed with constructs containing the coat protein (CP) genes of the P-PAV, MAV-PS1 or NY-RPV isolates of barley yellow dwarf virus (BYDV), together with a construct containing the bar gene for herbicide resistance and the uidA reporter gene. Transformed, herbicide-resistant tissue cultures were screened by PCR for the presence of the CP genes. Fertile regenerated plants were recovered from some CP-transformed tissue cultures. T1 progeny of these plants were screened for resistance to the BYDV isolate corresponding to the introduced gene by inoculation with viruliferous aphids followed by ELISA tests. Variation in ELISA values for GAF30/Park control plants made interpretation of the data difficult, but oat plants resistant to each of the three isolates of BYDV (ELISA values less than 0.3; virus titers equivalent to less than 25% of infected controls) were identified in T1 generations. Further testing of MAV-PS1 CP-transformed lines to the T2 generation, NY-RPV CP-transformed lines to the T3 generation and P-PAV CP-transformed lines to the T4 generation identified further resistant plants. Similarly, immature embryos and calli of the barley cultivar Golden Promise were biolistically bombarded with constructs containing the CP gene of the P-PAV isolate of BYDV and the bar and uidA reporter genes, lines of self-fertile P-PAV CP-transformed barley plants were developed, and T1plants were screened for resistance to P-PAV. Eight plants from six lines showed moderate to high levels of resistance to P-PAV that correlated with the presence of the CP gene. Plants giving low ELISA values were also found in other lines, even though the CP gene was not detected in these plants. Some T2 plants derived from resistant parents that contained the CP gene were themselves highly resistant.  相似文献   

15.
 西瓜花叶病毒(watermelon mosaic virus,WMV)是危害我国葫芦科作物生产的重要病原。培育和种植抗病品种是防治病毒病最经济有效的措施。本研究利用RT-PCR和血清学方法在表现环斑症状的西葫芦果实上检测到WMV,未检测到番木瓜环斑病毒(papaya ringspot virus,PRSV)。接种WMV侵染性克隆到西葫芦品种绿源冬宝,果实表面产生环斑症状,表明WMV是引起西葫芦果实表面环斑症状的重要病原。利用间接ELISA方法对山东泰安的西瓜、黄瓜、甜瓜、西葫芦和南瓜等46个样品检测发现33个样品表现WMV血清学阳性(检出率71.74%),薛庄采集的带有环斑症状的西葫芦均检测到WMV。对山东省81份葫芦科作物种质资源抗WMV鉴定发现西葫芦品种万盛丰宝、盛丰金珠表现中抗(MR);西瓜品种绿宝新秀和浪潮一号表现中抗(MR);甜瓜品种黄皮面瓜表现抗病(R);黄瓜品种星君贝贝表现中抗(MR);南瓜品种爱维80南瓜表现高抗(HR),蜜本南瓜、传统蜜本南瓜、七叶早南瓜、玲珑二号和绿贝贝迷你南瓜等5个品种表现抗病(R);瓠瓜品种均表现为感病(S)。研究结果对合理布局葫芦科作物品种防控WMV具有重要意义。  相似文献   

16.
为了明确我国北方稻区水稻条纹病毒(Rice stripe virus,RSV)群体的分子变异和水稻品种的抗性情况,测定了2004年和2005年从我国6省9个地区采集的34个RSV分离物的外壳蛋白(coat protein,CP)基因的序列,并对其进行了分析,同时用强致病性江苏分离物(RSV-JS)对河南、安徽、山东、河北等省的25个推广品种进行了抗性研究。结果表明,供试RSV分离物间的核苷酸序列一致性和氨基酸序列的一致性分别在93.9%~100%和96.3%~100.0%之间。根据CP基因核苷酸序列一致性,所有分离物可以分为2组。云南4个分离物为一组,其余为一组。在第2组中各分离物CP基因的核苷酸序列和氨基酸序列的一致性与地域无必然联系。且在2年之内,RSVCP基因变异不大。抗病性鉴定表明同一分离物在不同水稻品种上表现不同症状。表现高抗(HR)的品种占供试品种的24%;60%以上的品种表现为感病,且不同水稻品种上表现不同症状。因此,我国北方稻区RSV的CP基因非常保守,但同一分离物在不同水稻品种上可能表现不同症状,不同水稻品种对RSV抗性有显著差异。这些结果为我国北方稻区水稻条纹叶枯病防治和抗病毒基因工程提供了理论依据。  相似文献   

17.
对山东省侵染马铃薯的一个马铃薯X病毒(PVX)分离物PVX—SD1的外壳蛋白(CP)基因进行了克隆和序列分析。以提纯的病毒RNA为模板,应用RT-PCR扩增目的基因,通过常规的基因克隆法将扩增的CP基因导入pUC19载体,测序。结果表明,PVX—SD1的CP基因长719bp,可编码248个氨基酸;与Gen—Bank中报道的15个有代表性的株系或分离物相比较,核苷酸同源性在80.1%-99.7%,氨基酸同源性在89.8%-100%;与欧洲株系UK3仅1个核苷酸不同,同源性为99.7%,氨基酸同源性达100%,表明它们可能为同一株系,属于X^3组.  相似文献   

18.
 2018—2020年,从南宁市武鸣区、宾阳县的西番莲果园中采集疑似感染双生病毒的西番莲叶片样品,利用PCR、RCA、基因克隆、序列比对和进化树分析等方法,明确了其感染的病毒及系统进化关系。结果显示:采集的23份西番莲样本中有19份扩增出一条570 bp的目的条带,证实受到双生病毒侵染;从部分阳性样品中共获得11条病毒全长基因组序列,其中10条序列与已报道的广东番木瓜曲叶病毒(papaya leaf curl Guangdong virus,PaLCuGdV)各分离物的核苷酸相似性达92%以上;1条序列与已报道的一品红曲叶病毒(euphorbia leaf curl virus,EuLCV)各分离物的相似性达92%以上;依据双生病毒分类标准,确定侵染广西西番莲的双生病毒为PaLCuGdV和EuLCV的分离物;进化树分析发现,PaLCuGdV广西西番莲分离物与PaLCuGdV韩国各西番莲分离物和中国台湾西番莲分离物处于同一大分支,说明PaLCuGdV广西西番莲各分离物与PaLCuGdV韩国各西番莲分离物和中国台湾西番莲分离物具有较近的亲缘关系;EuLCV广西西番莲分离物与EuLCV韩国分离物、中国山东一品红分离物和福建一品红分离物等处于一个大分支,但广西分离物却又独处一个小的分支,说明广西分离物虽然与上述几个分离物亲缘较近,但可能存在较为独立的进化。这是PaLCuGdV和EuLCV侵染广西西番莲的首次报道。  相似文献   

19.
 本研究以转不可翻译的马铃薯Y病毒坏死株系外壳蛋白基因(PVYN CP)烟草的T3代植株为材料,在获得高度抗病植株并证明转基因植株的抗病性是由RNA沉默介导的基础上,采用Northern杂交及ELISA检测病毒的方法,分析了温度对转基因烟草中RNA沉默以及转基因植株抗病水平的影响。结果表明,低温可以改变转基因植株中已发生的RNA沉默和转基因植株的抗病状态。在15℃低温下生长的转基因植株,转基因产生的RNA沉默被抑制,转基因植株失去了对PVYN高度抗病的特性,表现感病症状;而在25℃或以上高温(30℃、35℃)下生长的转基因植株,转基因产生的RNA沉默没有发生被抑制的现象,转基因植株对PVYN病毒的侵染仍保持高度抗病性。  相似文献   

20.
 为探索核基质结合区(matrix attachment regions,MARs)对RNA介导的病毒抗性的影响,我们将从烟草中克隆到的核基质结合区TM2构建在包含马铃薯Y病毒全长非翻译CP基因的植物表达载体pRPVYCPN的表达盒的两侧,构建了植物表达载体pRTM2CPNTM2。采用农杆菌介导基因转化法,将表达载体pRPVYCPN和pRTM2CPNTM2转入烟草品种NC89中,分别获得了144株和344株转基因烟草。抗病性检测发现,核基质结合区的存在能明显提高RNA介导抗性的产生效率。在含MARs转基因植株中,抗病植株的比率为15.1%,而不含核基质结合区的转基因植株的抗病比率则为8.3%。这一研究结果对抗病毒植物的分子育种和转基因表达调控有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号