首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our objectives were to determine the influences of supplemental nonprotein N or protein on feed intake, digestibility, and postabsorptive N metabolism in sheep fed a high-concentrate diet for ad libitum consumption. Nine Romanov-sired, crossbred wethers (13 mo old; 52 kg) were fitted with catheters in a mesenteric artery, mesenteric vein, portal vein, and hepatic vein. Wethers consumed a 95% concentrate diet ad libitum. Treatments consisted of control (no supplemental N; 6.6% CP) or supplemental urea (11.4% CP), soybean meal (SBM; 11.2% CP) or ruminally undegradable protein (BFM; 11.2% CP; 50:50 blood meal and feather meal). Intake or apparently digested intake of DM, OM, and energy did not differ between control and N-supplemented (P > 0.40), or between urea- and protein-supplemented (P > 0.40), but were greater (P < 0.05) in SBM- than in BFM-supplemented wethers. Intake and apparently digested intake of N were less (P < 0.01) in wethers fed the control diet than in those receiving N supplementation but were less (P = 0.03) in BFM- than in SBM-supplemented wethers. Neither portal nor hepatic venous blood flows differed (P > 0.15) among treatments. Net portal release and hepatic uptake of alpha-amino N and ammonia N and hepatic release of urea N were greater (P < 0.05) in wethers supplemented with N than in controls, but portal-drained viscera (PDV) uptake of urea N did not differ (P > 0.40) among diets. Splanchnic release of a-amino N and ammonia N did not differ from 0 or among diets (P > 0.10), but net release of urea N was less (P = 0.05) for control than for sheep receiving N supplementation. No differences (P > 0.10) in blood concentration within vessel or net flux across PDV, hepatic, or splanchnic tissues of alpha-amino N, ammonia N, or urea N were observed among wethers receiving supplemental N. Net uptake of oxygen by the PDV did not differ among diets, but hepatic uptake was less (P < 0.05) in control and urea-supplemented sheep than in sheep receiving SBM or BFM. These observations suggest that the source of supplemental N had no large effects on the overall N economy of the animals used in this study.  相似文献   

2.
We hypothesized that providing dried distillers grains with solubles (DDGS) would improve the N retention and use of nutrients by wethers fed a moderate-quality bromegrass hay. Additionally, we hypothesized that treatment effects on nutrient fluxes would be similar after 3, 6, or 9 wk on treatment. Chronic indwelling catheters were surgically implanted in a mesenteric artery, mesenteric vein, hepatic vein, and portal vein of 9 Suffolk x Dorset wethers (initial BW +/- SD = 57.4 +/- 6.1 kg). Wethers had ad libitum access to moderate-quality bromegrass hay (8.44% CP, DM basis) and received 100 g/d of either a corn-based (Corn, n = 4) or a DDGS-based (n = 5) supplement. There was no difference in DMI (P = 0.85) or DM digestibility (P = 0.46) between the 2 groups. There was a numerically greater N intake (21.5 vs. 18.4 g/d; P = 0.14) and N retention (4.4 vs. 2.5 g/d; P = 0.15) when wethers were supplemented with DDGS instead of Corn. Wethers fed DDGS had a greater (P = 0.008) release of alpha-amino N from the portal-drained viscera (PDV, 37.9 mmol/h) than those fed Corn (14.1 mmol/h). Similarly, there was a shift (P = 0.004) from a net splanchnic uptake to a net release of alpha-amino N in wethers fed DDGS (9.1 mmol/h) compared with those fed Corn (-9.6 mmol/h). However, there was no difference in ammonia release from the PDV (P = 0.49) or hepatic release of urea-N (P = 0.19) between the 2 treatments. There were very limited interactions between nutrient fluxes and the length of time after the initiation of treatments. However, there was a tendency (interaction, P = 0.07) for the PDV release of alpha-amino N to be greater at 6 and 9 wk after the initiation of the treatments than after 3 wk on treatment for wethers fed DDGS, although there was no difference over time for wethers fed the Corn supplement. Additionally, there were changes in numerous nutrient fluxes between 3 and 6 wk after the initiation of treatments regardless of treatment. These data indicate that DDGS is a viable supplement to enhance the nutriture of ruminants consuming moderate-quality forages. Additionally, these data indicate that the effects are discernible after 3 wk on treatment, with modest alterations in nutrient flux after additional time on treatment.  相似文献   

3.
Seven Meat Animal Research Center (MARC) III heifers (410+/-25 kg) fitted with hepatic portal, mesenteric venous, carotid catheters, and an abomasal cannula were used in a 7 x 5 incomplete Latin square design experiment. The objective was to evaluate the effects of increasing levels of ruminally degradable N (RDN) with or without the addition of abomasally infused casein on portal-drained visceral (PDV) flux of nutrients. Treatments consisted of dietary CP percentage levels of 9.5 (control), control plus .72% dietary urea (11.5U), control plus 1.44% dietary urea (13.5U), control plus abomasally infused casein (250 g/d; 11.5C), or control plus .72% dietary urea and abomasally infused casein (250 g/d; 13.5UC). All diets contained (DM basis) 80% ground corn, 15% corn silage, and 5% dry supplement and were provided for ad libitum consumption. Nitrogen intake increased (linear, P < .001) as CP increased from 9.5 to 13.5%. Portal-drained visceral release of ammonia N increased (linear, P < .10) as RDN increased, and was greater (P < .05) when protein was fed compared with heifers fed control (P < .10). Urea N removal by PDV was not affected ( P > . 10) by level of RDN but was greatest when 11.5C was fed and least when 13.5UC was fed. Net alpha-amino N (AAN) release by PDV was greatest when 13.5UC was fed (309 mmol/h), least when 9.5% CP was fed (112 mmol/h), and intermediate for the other groups (205 to 252 mmol/h). These data suggest that removal of N by the PDV may promote microbial protein synthesis when dietary RDN is low. When RDN needs have been met and amino acids are deficient for the host, escape protein should be fed to increase amino acid absorption.  相似文献   

4.
Our objective was to determine the impact of supplemental energy, N, and protein on feed intake and N metabolism in sheep fed low-quality forage. Six Texel x Dorset wethers (16 mo, 63+/-3.1 kg) fitted with mesenteric, portal, and hepatic venous catheters were used in a Latin square design with five sampling periods. Lambs were fed chopped bromegrass hay (4.3% CP) to appetite, and a mineral mixture was given. Treatments were 1) control (no supplement), 2) energy (cornstarch, molasses, and soybean oil), 3) energy plus urea, 4) energy plus soybean meal (SBM), and 5) energy plus ruminally undegraded protein (RUP; 50:50 mixture of blood and feather meals). Supplements were fed once daily (.3% BW). Forage DMI did not differ (P = .13), but intake of total DM, N, and energy differed (P<.01) among treatments. Apparent digestibilities of DM, OM, and energy were less (P<.01) for control than for other treatments. Apparent N digestibility was least for control and energy and greatest for urea treatments (P<.05). As a result, digested DM, OM, and energy ranked from least to greatest were control, energy, urea, SBM, and RUP, respectively. Apparently digested N was 2.44, 2.24, 11.39, 9.80, and 11.25 g/d for control, energy, urea, SBM, and RUP (P<.01; SE = .10). Hour of sampling x treatment was a significant source of variation for blood concentrations of ammonia N and urea N, net ammonia N release from portal-drained viscera (PDV) and liver, and urea N release from splanchnic tissues. These results were primarily because patterns through time for the urea treatment differed from the other treatments. Net PDV release of alpha-amino N did not differ (P>.05) between control and energy treatments. Values for those treatments were about one-half of values for urea, SBM, and RUP treatments, which did not differ (P>.05). Hepatic net uptake (negative release) of alpha-amino N for control was 53% of values for the other treatments, which did not differ (P>.05). Net release of alpha-amino N from splanchnic tissues did not differ among treatments (P = .34) and did not differ from zero. The data indicate that arterial alpha-amino N concentration, hepatic alpha-amino N uptake, PDV release and hepatic uptake of ammonia N, and hepatic release of urea N were greater in energy than in control treatments. We also found that hepatic uptake of alpha-amino N was 187% of PDV release in energy-supplemented lambs. These results suggest that energy supplementation of a protein-limiting diet stimulated mobilization of body protein.  相似文献   

5.
Eight multicatheterized wethers (35.9 +/- .8 kg BW) were used in a replicated 4 x 4 Latin square design to measure N retention and net uptake and release of plasma metabolites across the portal-drained viscera (PDV), hepatic (HEP), and total splanchnic (TS) tissues in response to changes in supplemental N source. Treatments selected to provide different amounts of undegradable intake protein (UIP) were urea, soybean meal (SBM), poultry by-product meal (PBM), and bloodmeal:corn gluten meal (BMCGM; 50:50 CP basis). Diets (urea, SBM, PBM, and BMCGM) contained 12.9, 13.8, 13.6, and 13.2% CP, respectively. Periods were 10 d, with total feces and urine collected on d 7 to 10 and blood sampled on d 10. Wethers were fed at 2% of BW in 12 daily portions. Nitrogen retention was 2.2, 3.3, 4.1, and 4.4 g/d for urea, SBM, PBM, and BMCGM, respectively. Urea had less (P < .01) N retention than SBM, PBM, and BMCGM; SBM had less N retention (P < .01) than PBM and BMCGM. Arterial, portal, and hepatic plasma flows were greater (P < .09) for SBM than for PBM and BMCGM (21 vs 16, 17; 84 vs 72, 72; 105 vs 87, 88 L/h). Portal plasma flow was greater (P < .10) for urea than for SBM, PBM, and BMCGM (85 vs 84, 72, 72 L/h). Portal-drained viscera and TS alpha-amino N (AAN) fluxes were less (P < .05) for PBM than for BMCGM (20.5 vs 26.6 and 7.2 vs 15.1 mmol/h), but TS AAN flux was less (P < .05) for urea than for SBM, PBM, and BMCGM (6.9 vs 16.9, 7.2, 15.1 mmol/h). Portal-drained viscera flux and HEP removal of NH3 N were greater (P < .001) for SBM than for PBM and BMCGM (27.7 vs 19.4, 20.6; -28.1 vs -20.0, -21.4 mmol/h). Gut use was less (P = .07) and HEP and TS fluxes of urea N were greater (P < .01) for SBM than for PBM and BMCGM (-4.92 vs -8.32, -7.93; 25.87 vs 16.54, 20.00; 20.95 vs 8.22, 12.07 mmol/h). These data suggest that PBM and BMCGM improved efficiency of N use compared with urea and SBM by reducing urinary N loss.  相似文献   

6.
Effects of increased ammonia and/or arginine absorption across the portal-drained viscera (PDV) on net splanchnic (PDV and liver) metabolism of nitrogenous compounds and urinary N excretion were investigated in six catheterized Hereford x Angus steers (501 +/- 1 kg BW) fed a 75% alfalfa:25% (as-fed basis) corn-soybean meal diet (0.523 MJ of ME/[kg BW(0.75).d]) every 2 h without (27.0 g of N/kg of dietary DM) and with 20 g of urea/kg of dietary DM (35.7 g of N/kg of dietary DM) in a split-plot design. Net splanchnic flux measurements were obtained immediately before beginning and ending a 72-h mesenteric vein infusion of L-arginine (15 mmol/h). For 3 d before and during arginine infusion, daily urine voided was measured and analyzed for N composition. Feeding urea increased PDV absorption (P < 0.01) and hepatic removal (P < 0.01) of ammonia N, accounting for 80% of increased hepatic urea N output (P < 0.01). Numerical increases in net hepatic removal of AA N could account for the remaining portion of increased hepatic urea N output. Arginine infusion increased hepatic arginine removal (P < 0.01) and hepatic urea N output (P < 0.03) and switched hepatic ornithine flux from net uptake to net output (P < 0.01), but numerical changes in net hepatic removal of ammonia and AA N could not account fully for the increase in hepatic urea N output. Increases in urine N excretion equaled quantities of N fed as urea or infused as arginine. Estimated salivary urea N excretion was not changed by either treatment. Urea cycle regulation occurs via a complex interaction of mechanisms and requires N sources other than ammonia, but the effect of increased ammonia absorption on hepatic catabolism of individual AA in the present study was not significant.  相似文献   

7.
Eight cannulated wethers (BW = 52.5 +/- 5.7 kg) were used in a replicated 4 x 4 Latin square designed experiment to evaluate the effects of oscillating dietary protein concentrations on ruminal fermentation, site and extent of digestion, and serum metabolite concentrations. Four treatments consisted of a 13, 15, or 17% CP diet fed daily or a regimen in which dietary CP was oscillated between 13 and 17% on a 48-h basis (ACP). All diets consisted of 65% bromegrass hay (10.5% CP, 61.9% NDF, 37.2% ADF) plus 35% corn-based supplement and were formulated to contain the same amount of degradable intake protein (9.6% of DM) plus additional undegradable intake protein (SoyPLUS, West Central Cooperative, Ralston, IA) to accomplish CP levels above 13%. Each of four experimental periods were 16 d in duration with 12 d for diet adaptation followed by 4 d for sample collection. All wethers were fed at 3.0% of initial BW (DM basis) throughout the experiment, resulting in an average organic matter intake of 1.39 kg/d across treatments. When compared to the 15% CP daily treatment, feeding ACP had no effect (P > or = 0.10) on ruminal or lower tract N, NDF, ADF, or OM digestion. True ruminal OM digestion responded quadratically (P = 0.07) to increasing dietary CP, reaching a maximum of 52.0% of OM intake with the 15% CP treatment. Sheep fed ACP tended to have lower (P = 0.08) ruminal NH3 N concentrations and an overall higher (P = 0.0001) molar proportion of acetate compared to those fed 15% CP daily. Total VFA concentrations were not affected (P > or = 0.45) by increasing dietary CP. Microbial efficiency did not differ (P > or = 0.55); thus, bacterial N flow at the duodenum responded quadratically (P = 0.04) to increasing dietary CP. Nonbacterial N (P = 0.001) and total N (P = 0.01) flows at the duodenum and total tract N digestibility (P < or = 0.04) increased linearly as dietary CP increased. Wethers fed ACP maintained a lower (P = 0.002) serum glucose and lower (P = 0.0006) serum urea N compared to those fed 15% CP daily. Because the CP content of the diet was increased at the expense of corn, the response to increased CP observed in this experiment is most likely due to negative associative effects of supplemental starch on ruminal fermentation and microbial growth. Oscillating the CP content of the diet on a 48-h basis has little effect on digestion or N utilization in sheep compared with feeding the same quantity of protein on a daily basis.  相似文献   

8.
Effects of increased ammonia and/or arginine absorption on net splanchnic (portal-drained viscera [PDV] plus liver) metabolism of nonnitrogenous nutrients and hormones in cattle were examined. Six Hereford x Angus steers (501 +/- 1 kg BW) prepared with vascular catheters for measurements of net flux across the splanchnic bed were fed a 75% alfalfa:25% (as-fed basis) corn and soybean meal diet (0.523 MJ of ME/[kg BW(0.75).d]) every 2 h without (27.0 g of N/kg of DM) and with 20 g of urea/kg of DM (35.7 g of N/kg of DM) in a split-plot design. Net flux measurements were made immediately before and after a 72-h mesenteric vein infusion of L-arginine (15 mmol/h). There were no treatment effects on PDV or hepatic O2 consumption. Dietary urea had no effect on splanchnic metabolism of glucose or L-lactate, but arginine infusion decreased net hepatic removal of L-lactate when urea was fed (P < 0.01). Net PDV appearance of n-butyrate was increased by arginine infusion (P < 0.07), and both dietary urea (P < 0.09) and arginine infusion (P < 0.05) increased net hepatic removal of n-butyrate. Dietary urea also increased total splanchnic acetate output (P < 0.06), tended to increase arterial glucagon concentration (P < 0.11), and decreased arterial ST concentration (P < 0.03). Arginine infusion increased arterial concentration (P < 0.07) and net PDV release (P < 0.10) and tended to increase hepatic removal (P < 0.11) of insulin, as well as arterial concentration (P < 0.01) and total splanchnic output (P < 0.01) of glucagon. Despite changes in splanchnic N metabolism, increased ammonia and arginine absorption had little measurable effect on splanchnic metabolism of glucose and other nonnitrogenous components of splanchnic energy metabolism.  相似文献   

9.
The objective of this study was to investigate the effect of CP intake from 2 grass silage-only diets, differing in CP concentration, fed at similar DMI on the equine colon ecosystem after an abrupt feed change between the diets. Four adult right ventral colon-fistulated geldings were fed one silage-only diet high in CP (HP, 873 g of CP/d) and one diet providing recommended intakes (RP, 615 g of CP/d). An adaptation period of 15 d on either the HP or the RP diet was followed by 2 experimental periods when the diets were fed for 22 d each in a crossover design. Colon samples were taken before and at 4, 12, and 24 h, and at 7, 14, and 22 d after the feed change. During the first 24 h after the abrupt feed change, the concentrations of total anaerobic bacteria and lactobacilli were greater on the HP than the RP diet (7.1 vs. 6.7 log(10) cfu/mL, P = 0.021, 6.0 vs. 5.5 log(10) cfu/mL, P = 0.021, respectively). During the first 24 h post feed change, VFA concentrations did not differ between the diets. From 7 to 22 d, total VFA concentrations were greater on the HP diet than on the RP diet (51.8 vs. 45.1 mmol/L, P = 0.034), and colon pH was lower on the HP diet than on the RP diet (6.9 vs. 7.2, P = 0.035). After an adaptation period of 22 d, N, ammonia, and urea concentrations and osmolality of the colon fluid did not differ between diets. Fecal pH and colon and fecal DM were unchanged throughout the experiment. The results suggest that, in horses fed at the maintenance level of energy intake, a feed change between silages with different CP content may alter the colon bacterial counts within the first 24 h. Moreover, during the subsequent 3 wk, pH decreased slightly and VFA concentrations increased, but no other major alterations occurred in the composition and activities of the colon ecosystem or fecal DM.  相似文献   

10.
Two experiments were conducted to determine the effects of supplementing ruminally degradable intake protein (DIP) or ruminally undegradable intake protein (UIP) on N balance (Exp. 1; n = 6 wethers; initial BW = 48.7 +/- 4.6 kg) and site and extent of digestion (Exp. 2; n = 5 wethers; initial BW = 36.9 +/- 3.1 kg) in whiteface wethers consuming (as-fed basis) 69% blue grama and 31% love grass hay (mixture = 7.5% CP, 73.0% NDF, 36.0% ADF [DM basis]). Treatments were 1) no supplement (Control), 2) a supplement (219 g/d, as-fed basis) low in UIP (70 g/d of CP; 24.8 g/d of UIP), and 3) a supplement (219 g/d, as-fed basis) high in UIP (70 g/d of CP; 37.1 g/d of UIP). Both experiments were replicated 3 x 3 Latin square designs, with identical feeding and supplementation. Wethers had ad libitum access to the forage mixture and fresh water, and received supplement once daily. In Exp.1, forage intake (percentage of BW) was greatest (P = 0.04) for control, but total DMI (g/d) was greatest (P = 0.05) for lambs consuming supplement. Apparent total-tract OM digestibility was numerically greater (P = 0.11) for supplemented wethers than for controls, whereas total-tract ADF digestibility tended (P = 0.08) to be greater for control wethers. Lambs fed supplements consumed and retained more (P < or = 0.01) N (% of N intake) compared with controls, but no difference (P = 0.22) was observed between low and high UIP treatments. Similar to Exp. 1, forage intake (percentage of BW) tended (P = 0.06) to be greater for control than for supplemented wethers in Exp. 2. Ruminal NDF digestibility was 16.3% greater (P = 0.02) for supplemented wethers than for controls. Postruminal NDF and N digestibilities were greatest (P < or = 0.03) for controls, but apparent OM digestibility did not differ among treatments at all sites. Duodenal N flow was greatest (P = 0.05) for high UIP and least for control wethers. Nonmicrobial N flow was greater (P = 0.02) for high UIP compared with low UIP or controls. Control wethers had greater (P = 0.05) microbial efficiency. Ruminal ammonia concentration tended (P = 0.08) to be greatest for wethers fed low UIP and least for controls, with high-UIP wethers having intermediate ammonia concentrations. Results from these experiments suggest that in lambs fed low-quality forage there was no difference in apparent total-tract digestion or N balance (percentage of N intake) between lambs fed supplements that had the same CP but differed in the proportion of UIP and DIP; however, supplementing protein (regardless of UIP:DIP ratio) to wethers consuming low-quality forage increased N balance.  相似文献   

11.
Our objectives were to determine effects of grain processing on splanchnic (gut tissues and liver) N metabolism and whole-body N balance by growing steers and to ascertain the relative contributions of ruminal and intestinal tissues to net absorption and utilization of N-containing nutrients. Seven beef steers (348 kg initial BW), surgically implanted with appropriate catheters, were fed diets containing 77% steam-flaked (SF) or dry-rolled (DR) sorghum grain. Blood flows and net output or uptake of ammonia N, urea N, and alpha-amino N (estimate of amino acids) were measured across portal-drained viscera (PDV or gut tissues) and intestinal, ruminal, hepatic, and splanchnic tissues (PDV + hepatic). The experimental design was a crossover between DR and SF diets, with six samplings of blood at 2-h intervals on 2 d for each steer. Nitrogen intake (139 +/- 3 g/d), output in urine (43 +/- 2 g/d), and retention (40 +/- 3 g/d) were similar for both processing treatments. When steers were fed SF sorghum compared to DR sorghum, N retention as a percentage of N intake was numerically greater (P < 0.12), output of fecal N was numerically lower (P < 0.13), and urinary urea N was lower (P < 0.04). For SF vs DR, net uptake of alpha-amino N by liver was higher (P < 0.04; 20 vs 9 g/d) and was numerically lower (P < 0.16) for ruminal tissues (15 vs 33 g/d). Feeding steers SF compared to DR tended to increase net transfer (cycling) of blood urea N to PDV (57 vs 41 g/d; P < 0.07), increased cycling to intestinal tissues (15 vs 6 g/d; P < 0.05), and numerically increased transfer to ruminal tissues (42 vs 32 g/d; P < 0.12) but did not alter other net output or uptake of N across splanchnic tissues. Total urea N transfer (blood + saliva) was similar for both treatments. Net uptake of alpha-amino N by ruminal tissues was about 30% of the net amount of alpha-amino N absorbed across the intestinal tissues. In summary, most of the blood urea N cycled from the liver to gut tissues was transferred to ruminal tissues for potential microbial protein synthesis, and the net ruminal utilization of alpha-amino N was about 30% of that absorbed from intestinal tissues. Feeding growing steers SF compared to DR sorghum diets numerically increased whole-body N retention (percentage of N intake) by about 15% and tended to increase transfer of blood urea N to the gut by about 40%, which could increase the supply of high-quality microbial protein for absorption.  相似文献   

12.
Changes in net portal and hepatic nutrient flux and oxygen consumption in response to 3-d abomasal casein infusions were studied in seven multicatheterized beef steers. Steers were fed 4.3 kg DM/d of a high-concentrate diet in 12 equal meals. Blood flow (para-aminohippurate dilution) and net flux (venoarterial concentration difference x blood flow) across portal-drained viscera (PDV) and hepatic tissues were measured on d 3 of the abomasal infusions. In two experiments, the response to 300 (300C) and 150 (150C) g casein/d were compared, respectively, to a control water infusion. The 300C increased (P less than .05) arterial blood concentrations of alpha-amino N (AAN), urea N and ammonia; 150C increased (P less than .05) arterial urea N. Urinary urea N excretion was increased (P less than .01) by 300C and 150C. Although 300C increased net PDV release of AAN (P less than .07) and alanine (P less than .10), there was no net change in total splanchnic (TSP) flux due to an increased net hepatic uptake of AAN (P less than .01) and alanine (P less than .05). Net PDV glucose flux was decreased (P less than .05) by 300C, but net hepatic glucose flux was not affected by either level of casein. The 150C increased TSP oxygen consumption (P less than .05) and hepatic oxygen extraction (P less than .10). Approximately 26 and 30% of the casein N infused abomasally appeared in the portal blood as AAN for 150C and 300C, respectively. The sum of net PDV ammonia and AAN fluxes accounted for 47 and 88% of the N infused for 150C and 300C, respectively. These data emphasize the importance of intestinal and liver tissues in regulating the flux of nitrogenous compounds absorbed from the diet.  相似文献   

13.
Decreasing dietary N inputs into beef cattle feeding operations could potentially decrease environmental concerns relating to air and water quality. Previous studies with sheep suggest that oscillating dietary CP concentrations may improve N use efficiency and thereby decrease dietary N requirements. Therefore, two studies were conducted to determine the effects of oscillating dietary CP concentrations on performance, acid-base balance, and manure characteristics of steers fed high-concentrate diets. Steers were fed to a constant backfat thickness in both studies. In the first trial, 92 steers (mean BW = 408 +/- 2.8 kg; four pens/treatment) were fed the following diets: 1) constant 12% CP, 2) constant 14% CP, and 3) 10 and 14% CP oscillated at 2-d intervals. Steer performance and carcass characteristics were measured. In the second trial, 27 steers were individually fed the same three experimental dietary regimens (nine steers/treatment). Animal performance, arterial acid-base balance, plasma metabolites, and fecal characteristics were measured. In both trials, steers fed the 14% CP diet tended (P < 0.10) to have greater ADG and gain:feed than steers fed the 12% CP diet. Steers fed the oscillating CP regimen had intermediate performance. In Trial 1, steers fed the 14% CP diet tended (P = 0.09) to have smaller longissimus area and higher quality grades than steers fed the oscillating CP regimen. Protein retentions (g/d) calculated from NRC (2000) equations were greater (P = 0.04) for steers fed the 14% CP diet than steers fed the 12% CP diet. Steers fed the oscillating CP regimen tended (P = 0.08) to have greater calculated protein retention (g/d) than steers fed the 12% CP diet. Steers fed the 14% CP diet had greater (P < 0.05) calculated urinary N excretion than steers fed the 12% CP or oscillating CP regimens. Venous plasma concentrations of urea N were greater (P < 0.001) in steers fed the 14% CP diet than in steers fed the 12% CP diet; steers fed the oscillating CP regimen were intermediate but fluctuated over days. Based on arterial blood gas concentrations, acid-base balance was not significantly affected by dietary CP regimen. Results of these trials suggest that the CP requirement of steers in these studies was greater than 12% of the diet DM, and/or that the degradable CP requirement was greater than 6.3% of diet DM. However, the effects of oscillating dietary CP were minimal.  相似文献   

14.
Two experiments were conducted to determine effects of supplemental ruminally degradable protein (RDP) vs. increasing amounts of supplemental ruminally undegradable protein (RUP) on intake, apparent digestibility, N retention, and nutrient flux across visceral tissues in lambs fed low-quality forage. Lambs were fed a basal diet of crested wheatgrass hay (4.2% CP) for ad libitum consumption, plus 1 of 4 protein supplements: isolated soy protein (RDP source) fed to meet estimated RDP requirements (CON), or corn gluten meal (RUP source) fed at 50, 100, or 150% of the supplemental N provided by CON (C50, C100, and C150, respectively). In Exp. 1, 12 lambs (29.9 +/- 2.7 kg) were used. Forage OM intake was not affected (P = 0.46) by protein degradability or by increasing RUP (P >/= 0.31). Apparent total tract OM digestibility was not affected (P = 0.10) by protein degradability, but increased (P /= 0.40) by protein degradability or level of RUP. In Exp. 2, 16 catheterized lambs (32 +/- 5 kg) were used. Net release of ammonia-N from the portal-drained viscera (PDV) was greater (P = 0.02) for CON than for C100 and increased linearly (P = 0.002) as RUP increased. Net uptake of ammonia-N by liver was not affected (P = 0.23) by protein degradability, but increased linearly (P = 0.04) as RUP increased. Net urea-N release from liver was not affected (P >/= 0.49) by protein degradability or level of RUP. Net uptake of urea-N by PDV was greater (P = 0.02) for C100 compared with CON and increased (P = 0.04) with increasing RUP. Neither net release from PDV nor hepatic uptake of alpha-amino N were affected (P >/= 0.12) by protein degradability or level of RUP. Hepatic ammonia-N uptake accounted for 82, 38, 98, and 79% of net urea-N release from the liver for CON, C50, C100, and C150, respectively. Hepatic alpha-amino N uptake for all treatments greatly exceeded that required for the remaining urea-N release by the liver, suggesting that alpha-amino N may serve as a temporary means of storing excess N by liver between supplementation events. The pattern of net release or uptake of N metabolites between supplementation events requires further investigation.  相似文献   

15.
The objective of this experiment was to study the effects of level of intake and proportion of forage in the diet on site and extent of digestion of plant cell wall monomeric components (phenolics, neutral sugars) by sheep. Four Suffolk wethers (65 kg) with ruminal and duodenal cannulas were fed diets containing 75% (75A) or 25% (25A) alfalfa hay at two levels of intake, 1,700 (high intake, HI) or 1,100 (low intake, LI) g DM/d in a 4 X 4 latin-square design with a 2 X 2 factorial arrangement of treatments. The remainder of the diet consisted primarily of ground corn. Wethers had lower (P less than .05) total tract NDF and ADF digestibilities when fed 75A or at HI. An intake X forage level interaction (P less than .05) was noted for non-core lignin ferulic acid (FA) total tract disappearance, with wethers at LI having the highest, 25A-HI having the lowest, and 75A-HI having an intermediate FA disappearance. Wethers fed at LI had higher (P less than .05) total tract disappearance of non-core lignin p-coumaric acid (PCA). Wethers fed 75A had greater (P less than .05) total tract disappearances of core lignin vanillic acid (VA) and vanillin (VAN). Total tract digestibilities of the neutral monosaccharides glucose (GLC), xylose (XYL), arabinose (ARA) and galactose (GAL) were greater (P less than .05) for LI vs HI treatments. Wethers consuming 75A had greater (P less than .05) total tract ARA and GAL digestibilities, whereas wethers fed 25A had greater (P less than .05) total tract digestibilities of GLC and mannose (MAN). Diet composition and level of intake appear to influence site and extent of digestion of cell wall monomeric components.  相似文献   

16.
An experiment was conducted to determine the influence of postfast dietary CP and P concentration on the repletion of N, P, Ca, and Mg lost during a 3-d fast in sheep. Four Suffolk wether lambs averaging 35 kg were used in a 4 x 4 Latin square design. Lambs were fed a control diet (700 g/d; as-fed basis) for 14 d and were then deprived of feed and water for 3 d. Lambs were then fed one of four isoenergetic realimentation diets: 1) low CP/low P, 2) low CP/high P, 3) high CP/high P, and 4) high CP/very high P. Realimentation N and Mg intakes were 9.8 and 1.1 g/d for lambs fed the low-CP diet and 18.1 and 1.7 g/d for lambs fed the high-CP diets, respectively. Realimentation P intakes were 1.40, 2.36, 2.66, and 3.82 g/d for lambs fed Diets 1, 2, 3, and 4, respectively. Nitrogen, P, Ca, and Mg apparent digestibility and balance and serum urea N, free fatty acids, P, Ca, Mg, and alkaline phosphatase were determined during the prefast, fast, and realimentation periods. Lambs fed the high-CP diets had higher (P less than .05) N and P digestibility and balance than lambs fed the low-CP diet. Increasing the dietary P content did not affect (P greater than .15) P balance or digestibility. In general, the realimentation diet fed did not affect (P greater than .15) serum concentrations of free fatty acids, alkaline phosphatase, inorganic P, Ca, or Mg.  相似文献   

17.
Eleven Yorkshire x Landrace gravid gilts were used in two Latin square trials to determine the N requirement for pregnancy. Semipurified diets were formulated to be adequate in indispensable amino acids (IAA) and other nutrients. Diets were fed once daily (1.82 kg); L-glutamic acid, corn sugar, powdered cellulose, and soybean oil percentages differed to maintain isocaloric diets. In Trial 1, six gilts were fed diets containing 6.6 to 17.2% CP equivalent (19.2 to 50.1 g of N/d) during six 10-d periods beginning on d 40 postcoitum. In Trial 2, five gilts were fed diets containing 4.3 to 12.6% CP equivalent (12.5 to 36.8 g of N/d) during five 10-d periods beginning on d 50 postcoitum. Nitrogen balance trials were conducted during the last 5 d of each period. Blood samples were taken both before and 3 h after the last feeding of each period. Results from Trial 1 suggested that adequate N retention (10 g/d) could be attained by pregnant gilts fed less than 28 g of N/d intake when the diet contained indispensible amino acids at levels suggested by Nutrient Requirements of Swine (NRC, 1988). An intake of 20.6 g of N/d (7.1% CP equivalent) yielded near maximum N retention among pregnant gilts fed the semipurified diets in Trial 2. Other criteria measured (urine urea nitrogen and plasma urea nitrogen) had limited value in the evaluation of the N status of the pregnant gilts in these trials.  相似文献   

18.
We hypothesized that oscillation of the dietary CP concentrations would improve efficiency of N use and reduce N loss to the environment. Charolais-cross steers (n = 8; 315 +/- 21 kg of BW) were used in a replicated 4 x 4 Latin square design. The steers were allowed ad libitum access to the following diets: 1) 9.1% CP (low), 2) 11.8% CP (medium), 3) 13.9% CP (high), or 4) low and high oscillated on a 48-h interval on each diet (oscillating). Dry matter intake did not differ among treatments (P = 0.46), but N intake differed (P < 0.01) from 94 (low) to 131 (medium), 142 (high), and 133 g/d (oscillating), as designed. Dry matter digestibility increased (P < 0.01) from 71.8% (low) to 75.8% (medium), 77.7% (high), and 77.5% (oscillating). Nitrogen digestibility increased (P < 0.01) from 62.2% (low) to 67.2% (medium) to 70.1% (high) and 70.9% (oscillating). Nitrogen retention was greater (P < 0.01) in steers fed oscillating (55.0 g/d) than in the steers fed low (34.8 g/ d) or high (40.2 g/d), but N retention of steers fed medium (49.8 g/d) differed (P = 0.02) only from that of steers fed low. Urinary urea N did not differ between steers fed medium (19.5 g/d) or oscillating (21.3 g/d) but was lowest (P < 0.01) for those fed low (8.2 g/d) and greatest for those fed high (39.2 g/d). Daily heat production (kcal/BW(0.75)) tended (P = 0.09) to be less for the steers fed low (177) than those fed medium (189), high (188), or oscillating (182). Cumulative in vitro ammonia volatilization from the manure of steers fed oscillating was lower (P < 0.01) for the initial 5 d of incubation than from manure of those fed medium, but there was no difference after 11 d of incubation. Additionally, there was a decrease (P < 0.01) in in vitro ammonia volatilization as protein concentration in the diet decreased from high to medium to low. These data indicate that oscillation of the dietary protein improved N retention of finishing steers compared with those in high and low N diets and that these changes were great enough to correspondingly alter ammonia volatilization from manure.  相似文献   

19.
Two experiments (4 X 4 Latin squares) were conducted, using four multiple-cannulated wethers (mean body weight, 65 kg), to determine effects of treating wheat straw (WS) with alkaline solutions (pH 11.5) of hydrogen peroxide (AHP; .26 g hydrogen peroxide/g WS) on site and extent of nutrient digestion in sheep. Diets contained either 33 to 37% (low WS) or 70 to 72% (high WS) AHP-treated (T) or non-treated (C) WS. Treatment of WS with AHP resulted in increased acid detergent fiber and cellulose concentrations and decreased acid detergent lignin (ADL) concentrations compared with non-treated WS. In Exp. 1, intakes were held constant at approximately 1,044 g dry matter (DM)/d. When fed AHP-treated WS diets, wethers digested more (P less than .05) DM, neutral detergent fiber (NDF) and cellulose in the stomach (54.8, 47.4, 51.6 and 20.0%; 65.6, 68.8, 51.5 and 37.2%; 66.6, 74.2, 45.2 and 40.7% of intake, respectively, for low WS-T, high WS-T, low WS-C and high WS-C diets) and in the total tract (83.0, 74.8, 68.4 and 50.0%; 81.8, 81.0, 53.9 and 42.1%; 85.2, 86.9, 50.2 and 47.6%, respectively, for the low WS-T, high WS-T, low WS-C and high WS-C diets), and had lower (P less than .05) ruminal pH than when fed the non-treated WS diets. In Exp. 2, the same wethers were fed diets similar to those fed in Exp. 1, but at ad libitum intake. Wethers consumed less (P less than .05) feed when fed the high WS-C diet than when fed the other three diets (2,234, 2,526, 2,271 and 1,297 g/d for the low WS-T, high WS-T, low WS-C and high WS-C diets, respectively). Digestibilities of DM, NDF and cellulose were higher (P less than .05) when sheep were fed the treated WS diets than when fed the non-treated WS diets (82.7, 70.7, 68.4 and 58.0%; 78.6, 72.9, 49.4 and 51.6%; 78.0, 84.0, 53.8 and 37.5%, respectively, for the low WS-T, high WS-T, low WS-C and high WS-C diets). Fluid and particulate dilution rates in the rumen were higher (P less than .08) when wethers consumed AHP-treated WS diets compared with non-treated WS diets (8.21, 8.56, 6.96 and 6.81%/h; 6.06, 6.73, 4.05 and 3.15%/h, respectively, for the low WS-T, high WS-T, low WS-C and high WS-C diets). The AHP treatment was successful in overcoming the major barriers to microbial degradation of WS in the gastrointestinal tract of wethers.  相似文献   

20.
As cattle mature, the dietary protein requirement, as a percentage of the diet, decreases. Thus, decreasing the dietary CP concentration during the latter part of the finishing period might decrease feed costs and N losses to the environment. Three hundred eighteen medium-framed crossbred steers (315 +/- 5 kg) fed 90% (DM basis) concentrate, steam-flaked, corn-based diets were used to evaluate the effect of phase-feeding of CP on performance and carcass characteristics, serum urea N concentrations, and manure characteristics. Steers were blocked by BW and assigned randomly to 36 feedlot pens (8 to 10 steers per pen). After a 21-d step-up period, the following dietary treatments (DM basis) were assigned randomly to pens within a weight block: 1) 11.5% CP diet fed throughout; 2) 13% CP diet fed throughout; 3) switched from an 11.5 to a 10% CP diet when approximately 56 d remained in the feeding period; 4) switched from a 13 to an 11.5% CP diet when 56 d remained; 5) switched from a 13 to a 10% CP diet when 56 d remained; and 6) switched from a 13 to an 11.5% CP diet when 28 d remained. Blocks of cattle were slaughtered when approximately 60% of the cattle within the weight block were visually estimated to grade USDA Choice (average days on feed = 182). Nitrogen volatilization losses were estimated by the change in the N:P ratio of the diet and pen surface manure. Cattle switched from 13 to 10% CP diets with 56 d remaining on feed or from 13 to 11.5% CP with only 28 d remaining on feed had lower (P < 0.05) ADG, DMI, and G:F than steers fed a 13% CP diet throughout. Steers on the phase-feeding regimens had lower (P = 0.05) ADG and DMI during the last 56 d on feed than steers fed 13.0% CP diet throughout. Carcass characteristics were not affected by dietary regimen. Performance by cattle fed a constant 11.5% CP diet did not differ from those fed a 13% CP diet. Serum urea N concentrations increased (P < 0.05) with increasing dietary CP concentrations. Phase-feeding decreased estimated N excretion by 1.5 to 3.8 kg/steer and nitrogen volatilization losses by 3 to 5 kg/steer. The results suggest that modest changes in dietary CP concentration in the latter portion of the feeding period may have relatively small effects on overall beef cattle performance, but that decreasing dietary CP to 10% of DM would adversely affect performance of cattle fed high-concentrate, steam-flaked, corn-based diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号