首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of short grazing intervals in the early part of the grazing season on the growth and utilization of grass herbage, and the performance of grazing dairy cows, in a rotational grazing system were examined. Seventy-six cows were allocated to two grazing treatments: a normal rotation treatment (20-d rotations for the first 60 d) and a short rotation treatment (12-, 8-, 8-, 8-, 12- and 12-day rotations). Thereafter, both treatments had the same grazing interval and over the season as a whole both treatments received the same amount of nitrogen fertilizer and were stocked at the same rate. The short rotation treatment significantly reduced pre- and post-grazing sward heights and pre-grazing herbage mass in May and June. Total herbage production was significantly lower on the short than the normal rotation treatment as a result of a significant reduction in the growth rate of herbage in May and June. The short rotation treatment had a significantly lower milk output per cow. Grazing shorter swards, as a result of shorter rotations, significantly reduced herbage intake, reflecting reductions in intake per bite, grazing time and total bites per day. Treatment had no significant effect on herbage quality or pre- and post-grazing sward height in August and September, despite the increased grazing severity in May and June with the short rotations. The severity of rotation length in this instance had a detrimental impact on animal performance, whereas a more modest reduction in grazing interval may control herbage production, without reducing animal performance.  相似文献   

2.
Abstract The grazing of agricultural pastures during winter and spring by geese is considered an important agricultural problem in parts of the U.K. This study describes the sward structure, leaf extension and senescence rates of Lolium perenne‐dominated pastures that are frequently grazed by barnacle geese (Branta leucopsis) during winter in South‐west Scotland, as well as the conducting of a field experiment that simulated grazing to investigate the effects of defoliation. Gross leaf extension and senescence rates were strongly related to temperature, daylength and average tiller size, resulting in positive values of net leaf extension rate per tiller for most of the winter. Total tiller length declined from November to January but increased from January to April. Sward height, however, declined consistently from October to April, suggesting that swards were becoming trampled by repeated visits by flocks of geese over this time. The structure of individual tillers was found to vary slightly over the winter, with tillers becoming more dominated by younger leaves towards the end of the winter. Experimental defoliation of tillers suggested that absolute leaf extension rates did not respond in an under‐ or over‐compensatory manner, even when tillers were nearly completely defoliated. The results suggested that sward structure and leaf extension rates are not unduly affected by repeated grazing by overwintering geese and that short‐term depletion and trampling are the main impacts.  相似文献   

3.
Annually sown cool-season small-grain cereal species can provide a valuable source of cool-season herbage for livestock in the southern Great Plains of the USA but limited access to field equipment for cultivation and sowing is an obstacle to their use. Italian ryegrass ( Lolium multiflorum Lam.) (IRG) can persist through self-seeding and may offer an alternative source of cool-season herbage. The effects of cutting dates in mid-April, early May or mid- to late May following sowing in the previous September, and of removing 0·57, 0·73 or 1·00 of the herbage mass at this time, on subsequent seed deposition, seedling re-establishment and herbage production of IRG were measured. Later cutting dates reduced seed production, seed deposition, 1000-seed weight and eventual re-establishment of IRG seedlings. Removing different proportions of the herbage mass did not compensate for reduced seed deposition arising from later cutting dates. Numbers of seed heads and seed required to achieve a self-seeded target population of 500 established seedlings m−2 ranged from 885 to 5650 seed heads m−2 and 3360 to 5850 deposited viable seeds m−2. Re-establishment of IRG through self-seeding showed a failure rate of 0·43 indicating that self-seeded IRG will need periodic resowing. Any economic benefit derived from self-seeded IRG will depend heavily on the success of its rate of re-establishment.  相似文献   

4.
In Appalachian USA, silvopasture offers promise of increased farm productivity. A synchronized, temporal understanding of open pasture (OP) and silvopasture (SP) nutritive characteristics is essential for grazing system development. We examined pasture‐type nutritive‐value relationships when herbage was harvested based on morphological maturity rather than calendar date. Neutral detergent fibre and acid detergent fibre (ADF and NDF) content were greater in silvopasture, while organic matter (OM) was lower (P < 0·05). Digestibility of SP herbage dry matter (DM) and OM tended (P = 0·10) to be lower (418 vs. 471 and 437 vs. 491 g kg?1 respectively). Neutral detergent fibre digestibility was greater (< 0·05) for OP than SP forage (538 vs. 480 g kg?1), and ADF tended to be greater (P = 0·10; 551 vs. 501). Open‐pasture forage fermentation effluent exhibited slightly higher microbial richness and Shannon diversity than SP. However, overall community composition of both bacteria and archaea did not differ between pasture types or sampling times. Pasture types show proximate analyses differences generally favourable to OP, although both have similar overall nutritive value. In addition, the SP sward exhibited a 4‐ to 6‐days delay in reaching equivalent maturity. Conversion of farm woodlots to SP would increase overall herbage production and improve pasture management flexibility.  相似文献   

5.
Scenarios of global climate change forecast an increase in air temperature of 3°C over the next 100 years in eastern Canada. Growth and nutritive value of cool‐season grasses are known to be affected by air temperature. It is also believed that grasses grown at high latitude have a greater nutritive value. The objectives of this study were to assess the effect of four combinations of day/night temperature and photoperiod (15 h–17/5°C; 15 h–22/10°C; 15 h–28/15°C; and 17 h‐17/5°C) on dry‐matter (DM) yield, in vitro true DM digestibility (IVTD), in vitro digestibility of neutral‐detergent fibre (NDF), and concentrations of NDF, acid‐detergent fibre (ADF), lignin, minerals and non‐structural carbohydrates (NSC) in timothy grown under controlled conditions. Furthermore, herbage was harvested in the morning and in the afternoon to assess the impact of the time of harvest. The dietary cation–anion difference [DCAD = (K+ + Na+) ? (Cl? + 0·6 S2?)] and the grass tetany index [GT index = K+/(Ca2+ + Mg2+)] were also calculated. Higher temperature regimes significantly decreased IVTD and digestibility of NDF but had a limited effect on concentrations of NDF, ADF and lignin. DM yield of herbage was less and the concentration of NSC was greater in timothy grown under a temperature regime of 28/15°C than the 17/5°C and 22/10°C regimes; this effect is mainly explained by a response to temperature stress. Values of DCAD and the GT index of herbage were also lower under the 28/15°C than the 17/5°C and 22/10°C regimes as a result of a decreased plant K concentration. Under the 17/5°C regime, an increase in 2 h of photoperiod resulted in increased DM yield, decreased concentrations of K, Ca, Mg, Cl and N, and an increased starch concentration; IVTD or digestibility of NDF were not affected, although lignin concentration was reduced. Harvesting timothy in the afternoon rather than in the morning resulted in higher NSC, mainly sucrose, concentrations, and decreased ADF and NDF concentrations. The forecasted increase in air temperature in eastern Canada over the next 100 years will result in lower yields and nutritive value of timothy.  相似文献   

6.
In pasture‐based dairy farming, new sustainable systems that involve the annual dry matter (DM) production of grazed and conserved forage beyond the potential of grazed pasture alone are being sought. The objective of this experiment conducted in Australia was to compare a complementary forage rotation (CFR) for conservation and grazing, comprising an annual sequence of three crops, namely maize (Zea mays L), forage rape (Brassica napus L) and a legume (Persian clover, Trifolium repesinatum L or maple pea, Pisum sativum L), with a pasture [kikuyu grass (Pennisetum clandestinum) over‐sown with short‐rotation ryegrass (Lolium multiflorum L)] as a pasture control treatment. The experiment was a complete randomized block design with four replicates (~0·7 ha each). Annual dry‐matter (DM) yield over the 3 years averaged >42 t ha?1 year?1 for the CFR treatment and >17 t ha?1 year?1 for the pasture treatment. The high DM yield of the CFR treatment resulted from >27 t ha?1 year?1 from maize harvested for silage and >15 t DM ha?1 year?1 utilized by grazing the forage rape and legumes. Total input of nitrogen (N) and water were similar for both treatments, resulting in higher N‐ and water‐use efficiency for the CFR treatment, which was more than twice that for the pasture treatment. Overall, the nutritive value of the pasture treatment was slightly higher than the mean for that of the CFR treatment. The implications of these results are that a highly productive system based on the CFR treatment in conjunction with the use of pasture is achievable. Such a dairy production system in Australia could increase the total supply of feed resources grown on‐farm and the efficiency of use of key resources such as N and water.  相似文献   

7.
White clover can reduce fertilizer‐N requirements, improve sward nutritive value and increase environmental sustainability of grazed grasslands. Results of previous experiments in glasshouse conditions and on mown plots have suggested that white clover may be more susceptible than perennial ryegrass to treading damage on wet soils. However, this phenomenon has not been investigated under actual grazing conditions. This experiment examined the effects of treading on clover content, herbage production and soil properties within three clover‐based grazing systems on a wet soil in Ireland for 1 year. Treading resulted in soil compaction, as evidenced by increased soil bulk density (< 0·001) and reductions in the proportion of large (air‐filled) soil pores (< 0·001). Treading reduced annual herbage production of both grass and white clover by similar amounts 0·59 and 0·45 t ha?1 respectively (< 0·001). Treading reduced the sward clover content in June (< 0·01) but had no effect on annual clover content, clover stolon mass or clover content at the end of the experiment. Therefore, there was little evidence that white clover is more susceptible to treading damage than perennial ryegrass under grazing conditions on wet soils.  相似文献   

8.
The effect of humic substances on the nutrient uptake, herbage production and nutritive value of herbage from sown grass pastures was studied in six field experiments. Commercial humic substances were applied in combination with mineral fertilizer or slurry, either as a solution (HF liquid; 8·3 kg humic substances ha−1) or incorporated into the mineral fertilizer (HF incorporated; 3·6 to 6·4 kg humic substances ha−1). A series of cuts, ranging from two to five cuts, was taken during the growing season. The general response in herbage production to application of humic substances was an increase in herbage mass of dry matter (DM) at the first cut although this was only significant in two experiments for the HF incorporated treatment. Total herbage production of DM over the growing season, however, was similar for treatments with or without application of humic substances. The overall effect of HF incorporated and HF liquid on the herbage mass of DM at the first cut across the experiments was calculated using a meta-analysis technique and it was shown that there was a significant proportional increase of 0·14 ( P  <   0·05) with the HF incorporated treatment and a non-significant increase of 0·08 with the HF liquid treatment compared to the control treatment. The nutritive value of the herbage at the first cut was similar across all treatments. In general nitrogen, phosphorus and potassium uptake at the first grass cut was higher after application of humic substances but only in one experiment was this increase statistically significant.  相似文献   

9.
Rotational stocking (RS) is generally associated with the intensification of pasture-based animal production systems, although many studies have shown little advantage over continuous stocking (CS). The objective of this research was to describe and explain the effects of two average canopy heights (20 and 30 cm) and three stocking methods (CS; rotational stocking with lenient defoliation, RSL; and rotational stocking with moderate defoliation, RSM) on forage accumulation (FA), vertical distribution of plant-part components, and nutritive value of ‘Mulato II’ hybrid brachiariagrass (Brachiaria spp. syn. Urochloa spp.) during two summer rainy seasons in Piracicaba, São Paulo, Brazil. Pastures were maintained at average canopy height of 20 and 30 cm under CS, and treatments under RSL and RSM were imposed by variations of ±20 and 30% of the average canopy heights, representing defoliation intensities of 33 and 47% of the pre-graze heights, respectively. The FA was not affected by CS, RSL, RSM stocking methods, averaging 8090 kg DM ha−1 year−1. Canopy bulk density and distribution of plant-part components in the canopy profile were better at the average canopy height of 20 cm, accompanied by the greater nutritive value. The leaf bulk density was generally greater in RSM compared to CS. Pastures under CS had greater crude protein and in vitro digestible matter, and lesser neutral detergent fibre concentrations. Mulato II brachiariagrass should be managed at an average height of 20 cm under CS.  相似文献   

10.
Cutting height is an important factor controlling the yield and persistence of grass swards harvested for conserved feed. The objective of this experiment was to determine the effect of four cutting heights (5, 10, 15 and 20 cm) on the yield, composition and productivity based on deviation from a size/density compensation line for swards of orchardgrass (Dactylis glomerata L.) and an orchardgrass/alfalfa (Medicago sativa L.) mixture harvested nine times over three growing seasons. Yield was greatest for the 5 cm cutting height through the course of the experiment but ground cover of orchardgrass declined. Prior to the final harvest, tiller weight and density were determined. The 10‐, 15‐ and 20‐cm treatments fell on an apparent size/density compensation line with slope ‐1·779 (R2 = ·99; = ·008) while the 5‐cm treatment fell considerably below that line indicating a reduction in productivity or relative persistence. Harvest at 10 cm appears to optimize yield while maintaining stand productivity in infrequently harvested orchardgrass swards.  相似文献   

11.
In some European countries, the majority of annual enteric methane (CH4) emissions by ruminants occur at pasture – a direct result of the predominance of grazing within ruminant production systems. However, there are only limited data available as to the effect of perennial ryegrass cultivar and season of harvest on CH4 production. Using the in vitro gas production technique, the effect of perennial ryegrass cultivar on fermentation characteristics and CH4 production was determined (Experiment 1) and the persistence of these traits throughout the growing season for two cultivars, identified from Experiment 1 as having either a high or low methanogenic potential, was examined (Experiment 2). In Experiment 1, organic matter (OM) digestibility and cumulative total gas production profiles were unaffected by cultivar but, with regard to the kinetics of CH4 production, the asymptote value (A), cumulative CH4 yield at 72 h, and the fractional rate (μ) of CH4 production at both time of 0·5A(T)(μCH4T) and at 48 h (μCH448h) were significantly (P < 0·05) different. The amount of digested OM, as a proportion of cumulative CH4 production (DigOM/CH4) at 24 and 72 h after commencement of inoculation, revealed that the amount of substrate required to produce 1 ml of CH4 also differed significantly between cultivars (P < 0·01). In Experiment 2, regrowth number significantly modified the majority of measured samples (P < 0·01); cultivar effects were limited to the lag phase of the cumulative CH4 production curve and DigOM/CH4 at 8 h only (P < 0·05). These results suggest that differences exist between cultivars in how OM is partitioned following microbial fermentation and that these differences demonstrate persistency throughout the growing season. In the course of time it may be possible to exploit these differences through cultivar selection and plant breeding programmes, and thereby reduce enteric CH4 emissions within pastoral production systems.  相似文献   

12.
The effects of rate of inorganic nitrogen (N) fertilization (0, 80 or 160 kg N ha?1 per regrowth), season of harvest (regrowths 1, 2 and 3) and perennial ryegrass (Lolium perenne L.) cultivar [classified as having either a normal or elevated water soluble carbohydrate (WSC) concentration genotype] on in vitro gas production and digestibility were assessed. Increased N fertilizer application significantly decreased total gas production (TGP), methane (CH4) production and organic matter digestibility (OMD). The results suggest that the decreases in TGP and CH4 production were associated with a restriction in organic matter (OM) fermentation and an altered crude protein (CP) to structural carbohydrate ratio rather than a modification in the stoichiometry of fermentation. Season of harvest only significantly (P < 0·05) altered in vitro OMD and CH4 production at 8 h, despite altering the chemical composition of the herbage. Cultivar effects on all measured in vitro parameters were not significant presumably because the elevated WSC concentration trait was not expressed strongly in the study.  相似文献   

13.
A database containing 140 articles published in journals (731 treatment means evaluated) was used to examine the effect of different lactic acid bacteria (LAB) on fermentation, chemical composition and aerobic stability of maize (corn) silage. Compared with the control, dry matter (DM) loss increased by 8% and 50% (p < .01) due to inoculation of maize silage with either homolactic LAB (hoLAB) or heterolactic LAB (heLAB). In vitro DM digestibility of maize silage increased only with hoLAB inoculation (+2.22%; p < .01). The heLAB inoculation increased (p < .01) the aerobic stability of maize silage by 71.3 hr. To investigate the effect of silage inoculation on livestock production, a second database comprising 35 articles [99 treatment means evaluated based on results from 648 cattle (429 beef cattle and 219 dairy cows) and 298 sheep] was used. Inoculation of maize silage with either hoLAB or heLAB did not affect milk yield (p > .05), but their combination (mixLAB) depressed milk yield (–2.5 kg/day; p < .01). Inoculation with hoLAB increased DM intake in sheep (+0.15 kg/day; p = .02), but decreased it in beef cattle (–0.26 kg/day; p = .01) without affecting average daily gain for both sheep and beef cattle (p ≥ .06). In conclusion, fermentative loss increased regardless of the bacterial inoculant used, while aerobic stability increased mainly by using heLAB. Benefits from hoLAB inoculation on animal performance were noted only for feed intake in sheep, while productive performances of dairy cows and beef cattle were not improved.  相似文献   

14.
In grass–legume swards, biologically fixed nitrogen (N) from the legume can support the N requirements of the grass, but legume N fixation is suppressed by additional fertilizer N application. This study sought to identify a fertilizer N application rate that maximizes herbage and N yields, N fixation and apparent N transfer from white clover to companion grasses under intensive grazing at a site with high soil‐N status. During a 3‐year period (2011–2013), swards of perennial ryegrass and of perennial ryegrass–white clover, receiving up to 240 kg N ha?1 year?1, were compared using isotope dilution and N‐difference methods. The presence of white clover increased herbage and N yields by 12–44% and 26–72%, respectively. Applications of N fertilizer reduced sward white clover content, but the effect was less at below 120 kg N ha?1. The proportion of N derived from the atmospheric N fixation was 25–70%. Nitrogen fixation ranged from 25 to 142 kg N ha?1 measured using the isotope dilution method in 2012 and from 52 to 291 kg N ha?1 using the N‐difference method across all years. Fertilizer N application reduced the percentage and yield of fixed N. Transfer of N from white clover to grass was not confirmed, but there was an increased N content in grass and soil‐N levels. Under intensive grazing, the maximum applied N rate that optimized herbage and N yields with minimal effect on white clover content and fixation rates was 60–120 kg N ha?1.  相似文献   

15.
The emphasis plant breeders place on improving seasonal dry‐matter (DM) yield of pasture plants may increase farm profitability through greater supply of DM for livestock in critical seasons. Economic values (EV) for traits can be used to guide plant breeders when selecting ‘top’ pasture plants. Two methods of calculating economic value (EV) for seasonal DM traits were evaluated. These were based on the cost of otherwise acquiring or replacing the unit change in DM (‘replacement cost method’) and the opportunity cost of not having the unit change in DM, based on changes in livestock production either as a change in stocking rate or a change in liveweight gains of growing livestock (‘change in livestock production method’). Using barley replacement cost, the EV of a 1‐kg increase in phalaris DM on Australian sheep and beef farms ranged between AUD0·234 in summer and AUD0·303 in winter. In contrast, the EV for seasonal DM using the change in weaner beef calf liveweight gains ranged between AUD0·256 in summer and AUD0·515 in winter. The change in livestock production method highlighted in this study offers an alternative to the replacement cost method, or more detailed farm system modelling or experimentations designed to estimate pasture EV.  相似文献   

16.
In grass-seed production, the purity of the product is of major importance and high purity can only be obtained by preventing contamination with other species and cultivars during the whole crop rotation. In this context, seeds of previously grown grass species or varieties are particularly important. This study investigated the influence of different soil tillage practices on persistence of newly shed seeds of two grass species, Poa pratensis and Lolium perenne . Leaving the seeds at or close to the soil surface reduced seed survival of both species to low levels compared with strategies that involved a deep incorporation of the seeds shortly after seed-shedding. Survival rate of seeds of P. pratensis after 1 year was reduced to a low level when seeds were left at the soil surface for 2–3 months before incorporation. Seeds of L. perenne were less persistent and survival rate after 1 year was generally very low if the seeds were left near the soil surface for approximately 1 month before deeper incorporation. Use of the stale seedbed technique to reduce the seedbank of the two species in the autumn ahead of a spring-established grass-seed crop was also found to be effective in reducing the potential risk of contamination.  相似文献   

17.
The dynamics of pericarp development compared to that of the embryo, as well as the effect of pre-anthesis and post-anthesis shading on pericarp histogenesis and dry weight dynamics of fruits from two sunflower (Helianthus annuus L.) hybrid cultivars along three capitulum positions, peripheral, mid and central were studied. During fruit formation, the cell division phase of the carpel takes place before anthesis. Eight days after anthesis the pericarp reached its final size, while its cell wall's sclerification was almost complete 13 days after anthesis. Pre-anthesis shading affected the carpel cell division period reducing (17–33%) the number of pericarp middle layer strata and increased the thickenings of the cell wall of the mid (19%) and central (33–63%) fruits. In central fruits, the dry weight accumulation period was reduced. In contrast, post-anthesis shading reduced both the cell wall thickness (16–64%) and the number (38–58%) of pericarp middle layer sclerified strata of fruits in the three positions of the capitulum. In the mid and central fruits, the dry weight accumulation period extended 11–16 and 3–4 days, respectively, over those of the control. Both shading treatments produced thinner and lighter pericarps, but with different anatomical features that were associated with differences in the efficiency of use of the fruit for industrial oil extraction.  相似文献   

18.
D. Levy 《Potato Research》1986,29(1):95-107
Summary The effects of high temperatures and water deficit on potatoes were investigated under field conditions. Nine cultivars and one un-named seedling were grown in the spring and in the summer under high temperatures. In both seasons the cultivars were grown under 3 water regimes: adequate water supply, moderate water deficit, and severe water deficit that were achieved by a modification of the single line source sprinkler irrigation system. Severe drought reduced tuber yields in both seasons. Moderate tolerance to a moderate water deficit in the spring season was exhibited by Draga, Désirée, and Monalisa. Late and intermediate cultivars produced high tuber yields in the spring season, and early cultivars had relatively smaller yield losses in the summer. The extent of tuber disorders, sprouting, rotting and malformation, varied considerably. High temperatures enhanced sprouting, rotting and malformation and drought may enhance sprouting and malformation. This investigation was supported by a grant from the Ministry of Foreign Affairs, Technical Assistance Department, Netherlands.  相似文献   

19.
Safflower (Carthamus tinctorius L.) is a deep-rooted crop which can tolerate water stress and can be grown in rotation with other crop species. Nitrogen is one of the most important nutrients for the growth and development of safflower; however, the effect of N level on dry matter, accumulation, partitioning, and retranslocation has not been extensively studied. A 2-year field study was therefore conducted with the objective to determine the effect of N fertilization on crop phenology, dry matter, N accumulation, partitioning and retranslocation of safflower grown under rain-fed conditions. Three rates of N were used (0, 100, and 200 kg N ha−1) and two hybrids (CW9048 and CW9050) of safflower were selected. The experiment was conducted during the 2003–2004 (2004) and 2004–2005 (2005) growing seasons on a calcareous sandy loam (Entisols, Orthents, Typic Xerorthent) at the experimental farm of the Aristotle University of Thessaloniki, in Northern Greece. During 2004 spring was quite mild with significant rainfall whereas during 2005 spring was hotter with lower rainfall. Our study found that N fertilization increased biomass at anthesis by an average of 24% and at maturity by an average of 25% compared with the control. Total above ground biomass increased after anthesis in both years, in both hybrids and for all fertilizer treatments. N fertilization increased the dry matter partitioning in leaves + stems and heads at anthesis and also in leaves + stems, seeds, and head vegetative components at maturity. Dry matter translocation was not affected by N fertilization but lower values were found during the second year. N content was affected by the fertilization treatments and increased in those plants treated with fertilizer compared with the controls. In addition, N fertilization increased N retranslocation from the vegetative parts of the plant to the seed, but it did not affect N gain. During the second year, which was drier, there were significant N losses but also greater N translocation efficiency and higher contribution of pre-anthesis N to seed. Seed yield was correlated with the dry matter and N translocation indices, and was higher for the fertilized plants, compared with the control. The present study indicates that N fertilization promoted the growth of safflower and increased the dry matter yield, N accumulation, translocation and seed yield under rain-fed conditions.  相似文献   

20.
Vicia villosa Roth is a forage legume with the capability for biological N fixation and natural reseeding, which could contribute to sustainability in semi‐arid regions. This study aimed to determine (i) the relationship between vetch density, seed production and spontaneous seed dispersal; (ii) the impact of the post‐dispersal tillage treatment over the soil seedbank dynamics; and (iii) potential predation of the seedbank by feral pigeons. A density range between 50 and 200 plants m?2 did not influence seed production or seed dispersal. Shallow disc tillage (SDT) clearly favoured self‐regeneration, resulting in higher amount of emerged seedlings during autumn compared to no tillage (NT). Based on observed emergence data, the percentage of emerged seedlings under SDT and NT were 38 and 6% of the seedbank, respectively, during 18 months after plot harvest. The lowest emergence values registered under NT could be associated with higher pressure from natural predators, soil‐borne pathogens, seed decay by ageing and false breaks. The feral pigeon (Columba livia var.) might be considered the main cause of vetch seedbank depletion in this study. Under controlled conditions, a single pigeon is able to consume, on average, between 184 and 768 seeds per day, depending on seed exposure and alternative food sources availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号