首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to investigate the accuracy of genomic prediction of body weight and eating quality traits in a numerically small sheep population (Dorper sheep). Prediction was based on a large multi-breed/admixed reference population and using (a) 50k or 500k single nucleotide polymorphism (SNP) genotypes, (b) imputed whole-genome sequencing data (~31 million), (c) selected SNPs from whole genome sequence data and (d) 50k SNP genotypes plus selected SNPs from whole-genome sequence data. Furthermore, the impact of using a breed-adjusted genomic relationship matrix on accuracy of genomic breeding value was assessed. The selection of genetic variants was based on an association study performed on imputed whole-genome sequence data in an independent population, which was chosen either randomly from the base population or according to higher genetic proximity to the target population. Genomic prediction was based on genomic best linear unbiased prediction (GBLUP), and the accuracy of genomic prediction was assessed according to the correlation between genomic breeding value and corrected phenotypes divided by the square root of trait heritability. The accuracy of genomic prediction was between 0.20 and 0.30 across different traits based on common 50k SNP genotypes, which improved on average by 0.06 (absolute value) on average based on using prioritized genetic markers from whole-genome sequence data. Using prioritized genetic markers from a genetically more related GWAS population resulted in slightly higher prediction accuracy (0.02 absolute value) compared to genetic markers derived from a random GWAS population. Using high-density SNP genotypes or imputed whole-genome sequence data in GBLUP showed almost no improvement in genomic prediction accuracy however, accounting for different marker allele frequencies in reference population according to a breed-adjusted GRM resulted to on average 0.024 (absolute value) increase in accuracy of genomic prediction.  相似文献   

2.
The degree of linkage disequilibrium (LD) between markers differs depending on the location of the genome; this difference biases genetic evaluation by genomic best linear unbiased prediction (GBLUP). To correct this bias, we used three GBLUP methods reflecting the degree of LD (GBLUP‐LD). In the three GBLUP‐LD methods, genomic relationship matrices were conducted from single nucleotide polymorphism markers weighted according to local LD levels. The predictive abilities of GBLUP‐LD were investigated by estimating variance components and assessing the accuracies of estimated breeding values using simulation data. When quantitative trait loci (QTL) were located at weak LD regions, the predictive abilities of the three GBLUP‐LD methods were superior to those of GBLUP and Bayesian lasso except when the number of QTL was small. In particular, the superiority of GBLUP‐LD increased with decreasing trait heritability. The rates of QTL at weak LD regions would increase when selection by GBLUP continues; this consequently decreases the predictive ability of GBLUP. Thus, the GBLUP‐LD could be applicable for populations selected by GBLUP for a long time. However, if QTL were located at strong LD regions, the accuracies of three GBLUP‐LD methods were lower than GBLUP and Bayesian lasso.  相似文献   

3.
The objective was to assess goodness of fit and predictive ability of subsets of single nucleotide polymorphism (SNP) markers constructed based on minor allele frequency (MAF), effect sizes and varying marker density. Target traits were body weight (BW), ultrasound measurement of breast muscle (BM) and hen house egg production (HHP) in broiler chickens. We used a 600 K Affymetrix platform with 1352 birds genotyped. The prediction method was genomic best linear unbiased prediction (GBLUP) with 354 564 single nucleotide polymorphisms (SNPs) used to derive a genomic relationship matrix ( G ). Predictive ability was assessed as the correlation between predicted genomic values and corrected phenotypes from a threefold cross‐validation. Predictive ability was 0.27 ± 0.002 for BW, 0.33 ± 0.001 for BM and 0.20 ± 0.002 for HHP. For the three traits studied, predictive ability decreased when SNPs with a higher MAF were used to construct G . Selection of the 20% SNPs with the largest absolute effect sizes induced a predictive ability equal to that from fitting all markers together. When density of markers increased from 5 K to 20 K, predictive ability enhanced slightly. These results provide evidence that designing a low‐density chip using low‐frequency markers with large effect sizes may be useful for commercial usage.  相似文献   

4.
We studied the effect of including GWAS results on the accuracy of single‐ and multipopulation genomic predictions. Phenotypes (backfat thickness) and genotypes of animals from two sire lines (SL1, n = 1146 and SL3, n = 1264) were used in the analyses. First, GWAS were conducted for each line and for a combined data set (both lines together) to estimate the genetic variance explained by each SNP. These estimates were used to build matrices of weights (D), which was incorporated into a GBLUP method. Single population evaluated with traditional GBLUP had accuracies of 0.30 for SL1 and 0.31 for SL3. When weights were employed in GBLUP, the accuracies for both lines increased (0.32 for SL1 and 0.34 for SL3). When a multipopulation reference set was used in GBLUP, the accuracies were higher (0.36 for SL1 and 0.32 for SL3) than in single‐population prediction. In addition, putting together the multipopulation reference set and the weights from the combined GWAS provided even higher accuracies (0.37 for SL1, and 0.34 for SL3). The use of multipopulation predictions and weights estimated from a combined GWAS increased the accuracy of genomic predictions.  相似文献   

5.
Most genomic prediction studies fit only additive effects in models to estimate genomic breeding values (GEBV). However, if dominance genetic effects are an important source of variation for complex traits, accounting for them may improve the accuracy of GEBV. We investigated the effect of fitting dominance and additive effects on the accuracy of GEBV for eight egg production and quality traits in a purebred line of brown layers using pedigree or genomic information (42K single‐nucleotide polymorphism (SNP) panel). Phenotypes were corrected for the effect of hatch date. Additive and dominance genetic variances were estimated using genomic‐based [genomic best linear unbiased prediction (GBLUP)‐REML and BayesC] and pedigree‐based (PBLUP‐REML) methods. Breeding values were predicted using a model that included both additive and dominance effects and a model that included only additive effects. The reference population consisted of approximately 1800 animals hatched between 2004 and 2009, while approximately 300 young animals hatched in 2010 were used for validation. Accuracy of prediction was computed as the correlation between phenotypes and estimated breeding values of the validation animals divided by the square root of the estimate of heritability in the whole population. The proportion of dominance variance to total phenotypic variance ranged from 0.03 to 0.22 with PBLUP‐REML across traits, from 0 to 0.03 with GBLUP‐REML and from 0.01 to 0.05 with BayesC. Accuracies of GEBV ranged from 0.28 to 0.60 across traits. Inclusion of dominance effects did not improve the accuracy of GEBV, and differences in their accuracies between genomic‐based methods were small (0.01–0.05), with GBLUP‐REML yielding higher prediction accuracies than BayesC for egg production, egg colour and yolk weight, while BayesC yielded higher accuracies than GBLUP‐REML for the other traits. In conclusion, fitting dominance effects did not impact accuracy of genomic prediction of breeding values in this population.  相似文献   

6.
There is an increasing interest in using whole‐genome sequence data in genomic selection breeding programmes. Prediction of breeding values is expected to be more accurate when whole‐genome sequence is used, because the causal mutations are assumed to be in the data. We performed genomic prediction for the number of eggs in white layers using imputed whole‐genome resequence data including ~4.6 million SNPs. The prediction accuracies based on sequence data were compared with the accuracies from the 60 K SNP panel. Predictions were based on genomic best linear unbiased prediction (GBLUP) as well as a Bayesian variable selection model (BayesC). Moreover, the prediction accuracy from using different types of variants (synonymous, non‐synonymous and non‐coding SNPs) was evaluated. Genomic prediction using the 60 K SNP panel resulted in a prediction accuracy of 0.74 when GBLUP was applied. With sequence data, there was a small increase (~1%) in prediction accuracy over the 60 K genotypes. With both 60 K SNP panel and sequence data, GBLUP slightly outperformed BayesC in predicting the breeding values. Selection of SNPs more likely to affect the phenotype (i.e. non‐synonymous SNPs) did not improve the accuracy of genomic prediction. The fact that sequence data were based on imputation from a small number of sequenced animals may have limited the potential to improve the prediction accuracy. A small reference population (n = 1004) and possible exclusion of many causal SNPs during quality control can be other possible reasons for limited benefit of sequence data. We expect, however, that the limited improvement is because the 60 K SNP panel was already sufficiently dense to accurately determine the relationships between animals in our data.  相似文献   

7.
旨在比较结合全基因组关联分析(genome-wide association study, GWAS)先验标记信息的基因组育种值(genomic estimated breeding value, GEBV)估计与基因组最佳线性无偏预测(genomic best linear unbiased prediction, GBLUP)方法对鸡剩余采食量性状育种值估计的准确性,为提高基因组选择准确性提供理论与技术支持。本研究选用广西金陵花鸡3个世代共2 510个个体作为素材,其中公鸡1 648只,母鸡862只,以42~56日龄期间的剩余采食量(residual feed intake, RFI)为目标性状,将试验群体随机分为两组,其中一组作为先验标记信息发现群体,用于GWAS分析并筛选最显著的top5%、top10%、top15%和top20%的位点作为先验标记信息;另外一组分别结合不同的先验标记信息进行遗传参数估计并比较基因组育种值的预测准确性,使用重复10次的五倍交叉验证法获取准确性,随后两组群体再进行交叉验证。研究结果表明,GBLUP计算RFI的遗传力为0.153,预测准确性为0.38...  相似文献   

8.
Reference populations for genomic selection usually involve selected individuals, which may result in biased prediction of estimated genomic breeding values (GEBV). In a simulation study, bias and accuracy of GEBV were explored for various genetic models with individuals selectively genotyped in a typical nucleus breeding program. We compared the performance of three existing methods, that is, Best Linear Unbiased Prediction of breeding values using pedigree‐based relationships (PBLUP), genomic relationships for genotyped animals only (GBLUP) and a Single‐Step approach (SSGBLUP) using both. For a scenario with no‐selection and random mating (RR), prediction was unbiased. However, lower accuracy and bias were observed for scenarios with selection and random mating (SR) or selection and positive assortative mating (SA). As expected, bias disappeared when all individuals were genotyped and used in GBLUP. SSGBLUP showed higher accuracy compared to GBLUP, and bias of prediction was negligible with SR. However, PBLUP and SSGBLUP still showed bias in SA due to high inbreeding. SSGBLUP and PBLUP were unbiased provided that inbreeding was accounted for in the relationship matrices. Selective genotyping based on extreme phenotypic contrasts increased the prediction accuracy, but prediction was biased when using GBLUP. SSGBLUP could correct the biasedness while gaining higher accuracy than GBLUP. In a typical animal breeding program, where it is too expensive to genotype all animals, it would be appropriate to genotype phenotypically contrasting selection candidates and use a Single‐Step approach to obtain accurate and unbiased prediction of GEBV.  相似文献   

9.
Background: Accurate evaluation of SNP effects is important for genome wide association studies and for genomic prediction. The genetic architecture of quantitative traits differs widely, with some traits exhibiting few if any quantitative trait loci(QTL) with large effects, while other traits have one or several easily detectable QTL with large effects.Methods: Body weight in broilers and egg weight in layers are two examples of traits that have QTL of large effect.A commonly used method for genome wide association studies is to fit a mixture model such as Bayes B that assumes some known proportion of SNP effects are zero. In contrast, the most commonly used method for genomic prediction is known as GBLUP, which involves fitting an animal model to phenotypic data with the variance-covariance or genomic relationship matrix among the animals being determined by genome wide SNP genotypes. Genotypes at each SNP are typically weighted equally in determining the genomic relationship matrix for GBLUP. We used the equivalent marker effects model formulation of GBLUP for this study. We compare these two classes of models using egg weight data collected over 8 generations from 2,324 animals genotyped with a42 K SNP panel.Results: Using data from the first 7 generations, both Bayes B and GBLUP found the largest QTL in a similar well-recognized QTL region, but this QTL was estimated to account for 24 % of genetic variation with Bayes B and less than 1 % with GBLUP. When predicting phenotypes in generation 8 Bayes B accounted for 36 % of the phenotypic variation and GBLUP for 25 %. When using only data from any one generation, the same QTL was identified with Bayes B in all but one generation but never with GBLUP. Predictions of phenotypes in generations 2 to 7 based on only 295 animals from generation 1 accounted for 10 % phenotypic variation with Bayes B but only6 % with GBLUP. Predicting phenotype using only the marker effects in the 1 Mb region that accounted for the largest effect on egg weight from generation 1 data alone accounted for almost 8 % variation using Bayes B but had no predictive power with GBLUP.Conclusions: In conclusion, In the presence of large effect QTL, Bayes B did a better job of QTL detection and its genomic predictions were more accurate and persistent than those from GBLUP.  相似文献   

10.
Using a combined multi‐breed reference population, this study explored the influence of model specification and the effect of including a polygenic effect on the reliability of genomic breeding values (DGV and GEBV). The combined reference population consisted of 2986 Swedish Red Breed (SRB) and Finnish Ayrshire (FAY) dairy cattle. Bayesian methodology (common prior and mixture models with different prior distribution settings for the marker effects) as well as a best linear unbiased prediction with a genomic relationship matrix [genomic best linear unbiased predictor (GBLUP)] was used in the prediction of DGV. Mixture models including a polygenic effect were used to predict GEBV. In total, five traits with low, high and medium heritability were analysed. For the models using a mixture prior distribution, reliabilities of DGV tended to decrease with an increasing proportion of markers with small effects. The influence of the inclusion of a polygenic effect on the reliability of DGV varied across traits and model specifications. Average correlation between DGV with the Mendelian sampling term, across traits, was highest (R2 = 0.25) for the GBLUP model and decreased with increasing proportion of markers with large effects. Reliabilities increased when DGV and parent average information were combined in an index. The GBLUP model with the largest gain across traits in the reliability of the index achieved the highest DGV mean reliability. However, the polygenic models showed to be less biased and more consistent in the estimation of DGV regardless of the model specifications compared with the mixture models without the polygenic effect.  相似文献   

11.
The average daily gain (ADG) and body weight (BW) are very important traits for breeding programs and for the meat production industry, which have attracted many researchers to delineate the genetic architecture behind these traits. In the present study, single‐ and multi‐trait genome‐wide association studies (GWAS) were performed between imputed whole‐genome sequence data and the traits of the ADG and BW at different stages in a large‐scale White Duroc × Erhualian F2 population. A bioinformatics annotation analysis was used to assist in the identification of candidate genes that are associated with these traits. Five and seven genome‐wide significant quantitative trait loci (QTLs) were identified by single‐ and multi‐trait GWAS, respectively. Furthermore, more than 40 genome‐wide suggestive loci were detected. On the basis of the whole‐genome sequence association study and the bioinformatics analysis, NDUFAF6, TNS1 and HMGA1 stood out as the strongest candidate genes. The presented single‐ and multi‐trait GWAS analysis using imputed whole‐genome sequence data identified several novel QTLs for pig growth‐related traits. Integrating the GWAS with bioinformatics analysis can facilitate the more accurate identification of candidate genes. Higher imputation accuracy, time‐saving algorithms, improved models and comprehensive databases will accelerate the identification of causal genes or mutations, which will contribute to genomic selection and pig breeding in the future.  相似文献   

12.
我国白羽肉鸡育种中,通过遗传途径提高产蛋数和控制合适的蛋重是培育优良品系的一个重要方面。为探索适合我国白羽肉鸡育种中的基因组选择模型,本研究以2 474只白羽肉鸡品系的产蛋性状为研究对象,主要分析了机器学习算法KAML、BLUP(包括:PBLUP、GBLUP、SSGBLUP)和Bayes(包括:Bayes A、Bayes B和Bayes Cπ)方法对产蛋数和蛋重性状的预测准确性,准确性以5倍交叉验证进行评估。利用系谱以及基因组信息估计了产蛋数和蛋重性状的遗传力和遗传相关。结果表明,产蛋数性状遗传力为0.061~0.16,属于低遗传力性状;蛋重遗传力为0.28~0.39,属于中等遗传力性状;产蛋数与蛋重是中等遗传负相关(-0.518~-0.184),不同阶段产蛋数之间是强的遗传正相关(0.736~0.998)。不同模型预测43周产蛋数和52周蛋重的育种值估计准确性结果表明,KAML方法对两者的预测准确性分别为0.115和0.266,与GBLUP方法(准确性分别为0.118和0.283)和SSGBLUP方法(准确性分别为0.136和0.259)的准确性差异显著,同时显著低于Bayes方法(准确性分别为0.230~0.239、0.336~0.340)的预测准确性, PBLUP方法预测准确性最低(准确性分别为0.095和0.246)。因此,在白羽肉鸡产蛋数和蛋重性状中应用Bayes方法将获得最高的育种值估计准确性。  相似文献   

13.
旨在探究快速型黄羽肉鸡饲料利用效率性状的遗传参数,评估不同方法所得估计育种值的准确性。本研究以自主培育的快速型黄羽肉鸡E系1 923个个体(其中公鸡1 199只,母鸡724只)为研究素材,采用"京芯一号"鸡55K SNP芯片进行基因分型。分别利用传统最佳线性无偏预测(BLUP)、基因组最佳线性无偏预测(GBLUP)和一步法(SSGBLUP)3种方法,基于加性效应模型进行遗传参数估计,通过10倍交叉验证比较3种方法所得估计育种值的准确性。研究性状包括4个生长性状和4个饲料利用效率性状:42日龄体重(BW42D)、56日龄体重(BW56D)、日均增重(ADG)、日均采食量(ADFI)和饲料转化率(FCR)、剩余采食量(RFI)、剩余增长体重(RG)、剩余采食和增长体重(RIG)。结果显示,4个饲料利用效率性状均为低遗传力(0.08~0.20),其他生长性状为中等偏低遗传力(0.11~0.35);4个饲料利用效率性状间均为高度遗传相关,RFI、RIG与ADFI间为中度遗传相关,RFI与ADG间无显著相关性,RIG与ADG间为低度遗传相关。本研究在获得SSGBLUP方法的最佳基因型和系谱矩阵权重比基础上,比较8个性状的估计育种值准确性,SSGBLUP方法获得的准确性分别比传统BLUP和GBLUP方法提高3.85%~14.43%和5.21%~17.89%。综上,以RIG为选择指标能够在降低日均采食量的同时保持日均增重,比RFI更适合快速型黄羽肉鸡的选育目标;采用最佳权重比进行SSGBLUP分析,对目标性状估计育种值的预测性能最优,建议作为快速型黄羽肉鸡基因组选择方法。  相似文献   

14.
旨在比较简化基因组测序技术和基因芯片技术实施基因组选择的基因组估计育种值(GEBV)准确性。本研究在AH肉鸡资源群体F2代中随机选取395个个体(其中公鸡212只,母鸡183只,来自8个半同胞家系),同时采用10×SLAF测序技术和Illumina Chicken 60K SNP芯片进行基因标记分型。采用基因组最佳无偏估计法(GBLUP)和BayesCπ对6周体重、12周体重、日均增重、日均采食量、饲料转化率和剩余采食量等6个性状进行GEBV准确性比较研究,并采用5折交叉验证法验证。结果表明,采用同一基因标记分型平台,两种育种值估计方法所得GEBV准确性差异不显著(P>0.05);不同的性状对基因标记分型平台的选择存在差异,对于6周体重,使用基因芯片可获得更高的GEBV准确性(P<0.05),对于剩余采食量,则使用简化基因组测序可获得更高的GEBV准确性(P<0.05)。综合6个性状GEBV均值比较,两个基因标记分型平台之间差异不到0.01,高通量测序技术和基因芯片技术都可以用于黄羽肉鸡基因组选择。  相似文献   

15.
This study aimed to compare the accuracy of the genomic estimated breeding value (GEBV) using reduced-representation genome sequencing technology and SNP chip technology to implement genomic selection. A total of 395 individuals (212♂+ 183♀, from 8 half-sib families) were randomly selected from F2 generation of AH broiler resource population, and genotyped with 10×specific-locus amplified fragment sequencing (SLAF-seq) and Illumina Chicken 60K SNP BeadChip. Genomic best linear unbiased prediction (GBLUP) and BayesCπ were used to compare the accuracy of genomic estimated breeding values (GEBV) for 6 traits: body weight at the 6th week, body weight at the 12th week, average daily gain (ADG), average daily feed intake (ADFI), feed conversion ratio (FCR) and residual feed intake (RFI). A 5-fold cross validation procedure was used to verify the accuracies of GEBV between prediction models and between genotyping platforms. The results showed that there was no significant difference between accuracies of GEBV predicted by GBLUP and BayesCπ using the same genotyping platform(P>0.05). The superiority of the two genotyping platforms was different for different traits. For body weight at the 6th week, the accuracy of GEBV was higher using chip SNPs (P<0.05). On the contrary, the accuracy was higher using SLAF-seq for residual feed intake (P<0.05). Comprehensive comparison of the means of GEBV for 6 traits, the difference between the two genotyping platforms was less than 0.01, therefore, both high throughput sequencing and chip SNPs can be used for genomic selection in yellow-feathered broiler.  相似文献   

16.
The objectives of this study were to better understand the genetic architecture and the possibility of genomic evaluation for feed efficiency traits by (i) performing genome‐wide association studies (GWAS), and (ii) assessing the accuracy of genomic evaluation for feed efficiency traits, using single‐step genomic best linear unbiased prediction (ssGBLUP)‐based methods. The analyses were performed in residual feed intake (RFI), residual body weight gain (RG), and residual intake and body weight gain (RIG) during three different fattening periods. The phenotypes from 4,578 Japanese Black steers, which were progenies of 362 progeny‐tested bulls and the genotypes from the bulls were used in this study. The results of GWAS showed that a total of 16, 8, and 12 gene ontology terms were related to RFI, RG, and RIG, respectively, and the candidate genes identified in RFI and RG were involved in olfactory transduction and the phosphatidylinositol signaling system, respectively. The realized reliabilities of genomic estimated breeding values were low to moderate in the feed efficiency traits. In conclusion, ssGBLUP‐based method can lead to understand some biological functions related to feed efficiency traits, even with small population with genotypes, however, an alternative strategy will be needed to enhance the reliability of genomic evaluation.  相似文献   

17.
We aimed to investigate the performance of three deregression methods (VanRaden, VR; Wiggans, WG; and Garrick, GR) of cows’ and bulls’ breeding values to be used as pseudophenotypes in the genomic evaluation of test‐day dairy production traits. Three scenarios were considered within each deregression method: (i) including only animals with reliability of estimated breeding value (RELEBV ) higher than the average of parent reliability (RELPA ) in the training and validation populations; (ii) including only animals with RELEBV higher than 0.50 in the training and RELEBV higher than RELPA in the validation population; and (iii) including only animals with RELEBV higher than 0.50 in both training and validation populations. Individual random regression coefficients of lactation curves were predicted using the genomic best linear unbiased prediction (GBLUP), considering either unweighted or weighted residual variances based on effective records contributions. In summary, VR and WG deregression methods seemed more appropriate for genomic prediction of test‐day traits without need for weighting in the genomic analysis, unless large differences in RELEBV between training population animals exist.  相似文献   

18.
The objectives of this study were to estimate the additive and dominance variance component of several weight and ultrasound scanned body composition traits in purebred and combined cross‐bred sheep populations based on single nucleotide polymorphism (SNP) marker genotypes and then to investigate the effect of fitting additive and dominance effects on accuracy of genomic evaluation. Additive and dominance variance components were estimated in a mixed model equation based on “average information restricted maximum likelihood” using additive and dominance (co)variances between animals calculated from 48,599 SNP marker genotypes. Genomic prediction was based on genomic best linear unbiased prediction (GBLUP), and the accuracy of prediction was assessed based on a random 10‐fold cross‐validation. Across different weight and scanned body composition traits, dominance variance ranged from 0.0% to 7.3% of the phenotypic variance in the purebred population and from 7.1% to 19.2% in the combined cross‐bred population. In the combined cross‐bred population, the range of dominance variance decreased to 3.1% and 9.9% after accounting for heterosis effects. Accounting for dominance effects significantly improved the likelihood of the fitting model in the combined cross‐bred population. This study showed a substantial dominance genetic variance for weight and ultrasound scanned body composition traits particularly in cross‐bred population; however, improvement in the accuracy of genomic breeding values was small and statistically not significant. Dominance variance estimates in combined cross‐bred population could be overestimated if heterosis is not fitted in the model.  相似文献   

19.
In pig breeding, as the final product is a cross bred (CB) animal, the goal is to increase the CB performance. This goal requires different strategies for the implementation of genomic selection from what is currently implemented in, for example dairy cattle breeding. A good strategy is to estimate marker effects on the basis of CB performance and subsequently use them to select pure bred (PB) breeding animals. The objective of our study was to assess empirically the predictive ability (accuracy) of direct genomic values of PB for CB performance across two traits using CB and PB genomic and phenotypic data. We studied three scenarios in which genetic merit was predicted within each population, and four scenarios where PB genetic merit for CB performance was predicted based on either CB or a PB training data. Accuracy of prediction of PB genetic merit for CB performance based on CB training data ranged from 0.23 to 0.27 for gestation length (GLE), whereas it ranged from 0.11 to 0.22 for total number of piglets born (TNB). When based on PB training data, it ranged from 0.35 to 0.55 for GLE and from 0.30 to 0.40 for TNB. Our results showed that it is possible to predict PB genetic merit for CB performance using CB training data, but predictive ability was lower than training using PB training data. This result is mainly due to the structure of our data, which had small‐to‐moderate size of the CB training data set, low relationship between the CB training and the PB validation populations, and a high genetic correlation (0.94 for GLE and 0.90 for TNB) between the studied traits in PB and CB individuals, thus favouring selection on the basis of PB data.  相似文献   

20.
旨在挖掘快大型黄羽肉鸡胸肌肉品质性状的重要候选区间和基因。本研究以1 923只快大型黄羽肉鸡为素材,于56日龄屠宰并测定屠宰和胸肌肉品质性状;利用“京芯一号”55K SNP芯片进行基因分型,利用传统最佳线性无偏预测(BLUP)、基因组最佳线性无偏预测(GBLUP)和全基因组关联分析(GWAS)等方法进行遗传参数估计和QTL区间/关键基因的检测。结果显示,胸肌pH、肉色L24 h*。同时发现,位于5号染色体上的2个单倍型对胸肌pH、肉色性状均有极显著影响。以上结果为黄羽肉鸡肉品质遗传选择方案优化和分子育种技术研发奠定了重要基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号