首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
基于监测物料温度的胡萝卜热风干燥相对湿度控制方式   总被引:4,自引:3,他引:1  
针对热风干燥中,表面易结壳农产品物料阶段降湿干燥中各阶段高湿和低湿保持时间较难确定的问题,该文提出了在干燥介质温度和风速一定时,基于监测物料温度的热风干燥相对湿度控制方式。该控制方式在前期预热阶段保持较高恒定的相对湿度值,使物料迅速升温;中期干燥阶段物料温度保持特定值进行排湿干燥,物料温度有上升趋势时停止排湿使之升温;后期降速干燥阶段,物料保持较高温度值进行排湿干燥。胡萝卜的热风干燥验证试验研究结果表明,预热阶段,相对湿度控制最大偏差为1.0%;中期干燥阶段,物料排湿干燥物料温度保持值逐渐升高,物料温度上升至保持温度的最大误差为0.8℃;在后期干燥阶段,检测湿含量之差小于0.5 g/kg,判定干燥结束相对于称量判定干燥结束终点时间延迟为9 min。该干燥时间相比于前期相对湿度50%后期连续排湿和前期相对湿度50%后期相对湿度20%缩短了19.7%。该文提出了一种基于监测物料温度的热风干燥相对湿度调控策略,控制精度高,延迟时间短,相比于前期高湿后期低湿的干燥工艺能显著缩短干燥时间,提高干燥效率。  相似文献   

2.
干切牛肉冷冻干燥中解析干燥过程的动态模拟及优化   总被引:1,自引:2,他引:1  
该文通过对干切牛肉冷冻干燥中解析阶段含水率、物料温度的动态模拟及干燥速率与耗能分析,确立干切牛肉冷冻干燥中解析干燥的优化操作条件。通过建立解析阶段中脱除水分所需干燥时间以及相应的物料表面温度、物料中心温度的数学模型,并假设解析干燥过程中物料含水率由升华结束时的10.0%下降到干燥结束的0,以含水率变化为自变量,模拟了物料厚度为6、8、12、15 mm的干切牛肉在干燥室压强10 Pa,加热板温度80℃的操作条件下含水率、物料温度随时间的动态变化。以所建模型预测厚度7、9、10、11、12、13、14 mm的干切牛肉在该操作条件下含水率、物料温度的动态值及解析干燥周期。验证试验表明:预测与实测含水率相对误差小于10%,物料中心温度计算值与实测值的绝对误差小于5℃,说明所建模型可用于模拟、预测6~15 mm干切牛肉冷冻干燥中解析干燥阶段的参数变化。比较不同厚度干切牛肉冷冻干燥中解析干燥阶段的干燥比耗时、干燥效率,结果是采用6 mm厚度切片进行干燥,生产单位产品耗能最低,且生产率最大。  相似文献   

3.
冯谦  王冠  王芳 《农业工程学报》2008,24(7):264-268
为更有效地利用巨大而宝贵的桑枝资源,该文针对桑枝屑工厂化生产利用中需对物料进行抽样并快速检测其含水率的要求,依据烘干失重的测试原理,比较了桑枝屑的高温真空干燥方法和微波干燥方法.着重考察了物料初始重量、初始含水率、温度、真空度以及时间等工艺参数对干燥结果的影响.试验表明,无论采用哪种方法,物料的干燥曲线大致为预热、恒速、减速干燥3个阶段;在高温真空干燥中,温度较真空度对干燥速度的影响更为明显;在微波干燥中,微波功率对干燥速度的影响较大;微波干燥方法具有干燥速度快、对物料含水率检测更准确等优点.  相似文献   

4.
猕猴桃切片微波真空干燥工艺参数的优化   总被引:11,自引:4,他引:7  
为了提高水果干燥效率、干制品质量和降低干燥能耗,以猕猴桃切片为对象,进行了微波真空干燥试验。通过单因素试验,研究了微波功率、物料厚度、干燥室压力对猕猴桃切片干燥特性的影响。通过3因素5水平的二次回归正交试验,分析了微波功率、物料厚度、干燥室压力与猕猴桃切片干制品复水率、叶绿素含量、维生素C含量及单位耗电量的关系,建立了各指标与试验因素间的回归数学模型,并利用多目标非线性优化方法,确定了猕猴桃切片微波真空干燥最优工艺参数。结果表明:在微波功率为6.54 W/g、切片厚度为6.16 mm、干燥室压力为76.8 Pa的条件下,微波真空干燥猕猴桃切片的能耗最低,同时干制品质量也得到保证。  相似文献   

5.
提高干燥均匀性是微波技术在食品、农产品热加工研究的重要问题。为分析微波功率输入模式对浆状食品物料的温度及水分均匀性影响,以浆果果浆为高水分、高黏度、富含热敏性成分代表性物料,引入温度离散值(VT)、水分离散值(VM)、热区分布值(HTD)、温度对比值(CON)指标表征加热均匀性,解析连续和间歇变功率输入模式对浆果微波加热均匀性影响的原因。结果表明:在微波输入功率为800 W的微波加热过程中,果浆中依次出现缓慢升温(I)、温度稳定(II)和快速升温(III)3个阶段,其中温度离散值与热区分布值在升温区增加、在温度稳定区降低;水分离散值持续上升,温度对比值增大至温度稳定区、在快速升温区减小;在浆果微波干燥后期,果浆料层内冷、热点间温度差引起不均匀性减弱。微波在浆果物料边角产生过热效应是引起加热不均匀性主要原因。间歇变功率微波加热工艺可以改善均匀性,随功率转换点的减小,果浆温度离散值、水分离散值、和热区分布值的均匀度改善率增大;微波功率比的减小可提高加热均匀度,但当微波功率比低于0.5时会导致加热效率低;间歇时间的增大可以进一步提高果浆均匀度改善率,但间歇时间超过8 min后对果浆均匀度的改善程度减缓;选用微波功率转换点为第Ⅱ、Ⅲ阶段交界、微波功率比0.5、间歇时间8 min更利于提高加热均匀性与加热效率。研究结果为浆果类物料微波加热均匀性的评价提供数学模型,优化得到的变功率输入参数为提高浆果果浆的微波干燥均匀性提供技术参考。  相似文献   

6.
辐照苹果的干燥特性研究   总被引:8,自引:1,他引:8  
苹果经60CO-γ射线辐照预处理后进行热风干燥,结果表明:与未辐照苹果干燥相比,辐照后切片苹果的失水过程仅为降速过程,总失水速度加快;干燥过程中物料温度高;辐照剂量增加,失水速率高,物料温度升高。  相似文献   

7.
乙醇浸渍对切片茄子干燥特性和品质的影响   总被引:2,自引:3,他引:2  
为了提高切片茄子的干制品质、缩短干燥时间,对热风干燥前的切片茄子进行了乙醇浸渍处理。以不同干燥温度(45、55、65℃)、预处理乙醇体积分数(0、5%、15%)和茄子切片厚度(1.0、1.5、2.0 cm)为试验因素,以干燥时间及干燥后产品的干燥速率、色泽、复水比和微观结构为评价指标进行正交试验。试验结果表明:干燥温度、乙醇体积分数和切片厚度对干燥时间均有显著影响(P0.05);综合评价的影响顺序由大到小依次为:切片厚度干燥温度乙醇体积分数;切片茄子的干燥过程属于降速干燥,通过费克第二定律得到切片茄子的水分有效扩散系数在2.74×10-9~7.75×10-9 m2/s;切片厚度对干燥后茄子片的复水比有显著影响(P0.05),复水比随着切片厚度的增加而减少;乙醇体积分数对干燥后茄子片的色泽具有显著影响(P0.05),而且可以改变干燥后茄子的微观结构改善物料外观品质。当乙醇体积分数为15%、干燥温度为65℃、切片厚度为1.0 cm时,干燥时间为225 min,复水比为4.93,明亮度为88.24,既有较快的干燥速率又能够得到比较好的色泽。研究表明适宜体积分数的乙醇浸渍预处理能够提高切片茄子的干燥速率、改善色泽,为高品质切片茄子快速干燥提供了理论依据。  相似文献   

8.
香菜微波干燥的试验研究   总被引:2,自引:1,他引:1  
以提高蔬菜干制品质为目的,考察干燥因素对香菜微波干燥生产率及其品质的影响,用正交试验设计方法,探讨干燥功率、物料层厚度及排湿风速对香菜微波干燥特性及干制香菜品质和能耗的影响,利用极差分析和方差分析确定香菜微波干燥最优工艺参数。结果表明:不同微波干燥参数对香菜微波干燥特性和干制品质及能耗有不同的影响,风速对物料干燥速率、香菜干制品的品质指标影响最大,物料脱水过程主要处于恒速阶段,微波干燥功率为1.125W/g,物料层厚度为1.5cm,风速为60m/min时,可确保香菜干燥后的食用价值且便于储存,而且能耗较低。  相似文献   

9.
奶牛粪固形物热风干燥特性及工艺参数优化   总被引:2,自引:2,他引:0  
为了研究奶牛粪固形物在不同干燥条件下的热风干燥特性,该研究选取干燥温度、粪层厚度和搅拌频率作为研究因素,研究了牛粪干基含水率和干燥速率随时间变化的规律,利用6种经典的薄层干燥模型对牛粪的水分比MR与时间t曲线进行拟合获取了最优干燥模型,计算得出有效扩散系数和干燥活化能,并通过正交试验获取了干燥效率最高的快速干燥工艺参数。结果表明:干燥温度越高,粪层厚度越小,搅拌频率间隔时间越短,干基含水率下降越快;干燥过程由加速干燥阶段、近似恒速干燥阶段和降速干燥阶段组成,加速干燥阶段时间较短,符合高湿多孔类型物料的干燥特性;模型Wang and Singh能够较好地反映牛粪干燥过程水分变化规律,且有效扩散系数最小为7.31×10-5 m2/h,最小活化能为14.596 kJ/mol;通过正交试验得出干燥温度为105 ℃、粪层厚度为6 cm、搅拌频率间隔为4 min时,干燥效率最高,为0.017 h/g。该研究结果可为后续牛粪快速干燥工艺优化及干燥设备设计提供理论依据和数据支撑。  相似文献   

10.
子芋冷冻升华干燥最佳工艺研究   总被引:3,自引:1,他引:3  
研究子芋冷冻升华干燥时的工艺特性,包括降温速率、真空度、加热板温度设定程序以及冷凝器温度对冷冻干燥过程和产品质量的影响,并利用非线性回归分析法对最佳的加热板温度设定程序所对应的物料温度变化曲线的经验公式进行拟合。得出的子芋冻干最佳工艺条件为:快速冷冻到-30℃,降温速率为-0.2℃/min;干燥时真空室的真空度为66.7 Pa;冷凝器温度为-34℃~-40℃;加热板温度的设定程序为:在1.5 h内升温至80℃,恒温5 h,而后在1 h内降温至70℃,恒温1 h,又在1 h内降温至60℃后自动关闭加热器,自然冷却至室温。按此生产的产品感官效果明显好于热风干燥产品,且复水速率高34倍,复水量高1.3倍,体积收缩率仅为热风干燥产品的40.7%,重要营养成分α-VE的保存率提高1.15倍。  相似文献   

11.
微波干燥过程中南极磷虾肉糜的传热传质及形变参数模型   总被引:6,自引:6,他引:0  
该文以南极磷虾肉糜作为媒介,基于电磁学、多相传输和固体力学变形模型研究了微波干燥仿真模型。通过在软件COMSOL Multiphysics中求解电磁方程、能量和动量守恒以及变形方程得到模拟结果。红外热成像仪用于拍摄样品表面温度分布,光纤传感器用于测定样品点的瞬时温度。经过180 s的间歇微波干燥,空间温度分布、瞬态温度曲线(RMSE=2.11℃)、含水率(干基,RMSE=0.03)和体积比与试验值有良好的一致性,说明仿真微波干燥是可行的。此外,微波模拟干燥过程中将虾肉糜视为形变材料与刚性材料,在温度和含水率方面显示了较明显的差别且前者与试验值更为接近,且未考虑收缩模型的温度和含水率的RMSE分别为9.42℃与0.08。该研究还对液态水和气体的内在渗透性(±50%)以及吸水膨胀系数(±50%)进行了敏感性分析。含水率对液态水的内在渗透性较敏感(RMSE=0.089),对气体的内在渗透性较不敏感(RMSE=0.023),体积比对吸水膨胀系数非常敏感(RMSE=0.053)。  相似文献   

12.
为了研究疏解棉秆微波干燥过程中装载量对干燥时间、干燥速率、干燥效率以及单位能耗的影响,该试验采用微波频率为2 450 MHz,输出功率为1 k W的微波干燥设备,装载量范围在34~200 g的疏解棉秆进行干燥。结果显示:干燥过程经过一个短暂的升速后较长时间处于降速阶段;采用7种常见薄层干燥模型对干燥数据进行非线性拟合,通过比较决定系数、均方根误差、离差平方和,发现Midilli模型是表述疏解棉秆微波干燥的最优模型,干燥系数随着装载量的增加而减小;装载量从34 g增加到200 g时,干燥时间也随之从10 min增加到20 min;疏解棉秆的水分有效扩散系数随着装载量的增加而减小,其平均值介于1.8078×10-8~4.1997×10-8 m2/s,同时基于Arrhenius方程,求得平均活化能为4.82 W/g;装载量在34~200 g时,通过提高装载量能够提高微波干燥效率(7.52%~19.78%),同时降低微波干燥的单位能耗(12.49~35.90 MJ/kg)。研究结果为棉秆的干燥和工业化生产提供参考。  相似文献   

13.
南瓜片真空脉动干燥特性及含水率预测   总被引:5,自引:3,他引:2  
为探索南瓜片真空脉动干燥特性,并实现干燥过程中南瓜的含水率预测,该文研究了不同常压保持时间、真空保持时间、干燥温度和切片厚度对南瓜干燥时间和速率的影响;利用温度传感器实时采集南瓜在干燥过程中的中心温度,阐述压力脉动过程对物料传热传质的影响;建立了输入层个数为5,隐藏层个数为11,输出层为南瓜含水率,结构为"5-11-1"的BP神经网络模型,实现对南瓜含水率实时预测.结果表明:真空保持时间和常压保持时间均对南瓜干燥时间有显著影响,干燥温度60℃,切片厚度7mm条件下,常压保持时间10min和真空保持时间9min所用干燥时间最短,约为352min;干燥温度和切片厚度均对干燥时间有显著影响,提高干燥温度、减少切片厚度能够有效缩短干燥时间.采用Levenberg-Marquardt算法为训练函数,经过有限次训练得到的BP神经网络模型,其预测值与实测值之间的决定系数R2为0.9968,均方根误差RMSE为0.0173,能够很好预测南瓜在真空脉动干燥过程中的含水率.研究结果为南瓜真空脉动应用以及含水率在线预测提供理论依据.  相似文献   

14.
绿茶微波真空干燥特性及动力学模型   总被引:9,自引:6,他引:3  
为了解茶叶在微波真空干燥过程中水分的变化规律,以绿茶为原料,进行了微波真空干燥试验。通过绘制干燥曲线和失水速率曲线,研究相对压力、比功率对绿茶微波真空干燥特性的影响,并建立干燥动力学模型,量化比功率与干燥时间、含水率之间的关系。结果表明:绿茶微波真空干燥过程按失水速率快慢可分为加速和降速2个阶段,无明显恒速干燥阶段;随着相对压力降低,干燥时间缩短,但-80 kPa后继续降低相对压力对含水率变化影响不显著;比功率越大干燥时间越短;绿茶微波真空干燥的动力学模型满足Page方程,该模型可较好地描述含水率随干燥时  相似文献   

15.
开放式太阳能物料干燥热湿迁移模型的构建及验证   总被引:1,自引:1,他引:0  
基于开放式太阳能物料干燥过程中存在干燥品质不可控、随机性较大的问题。根据传热传质理论知识,建立开放式太阳能物料干燥热湿迁移预测模型,在综合考虑太阳能辐射、室外空气温湿度、室外风速等影响因素的基础上,对模型中的参数进行选择,并利用MATLAB软件编制求解程序,该模型能够预测出干燥过程中物料表面的温度及水分迁移速率变化。为验证模型的准确性,以红薯为干燥物料对其开放式太阳能干燥过程进行试验测试。结果表明:物料表面温度、水分迁移速率的模拟值与试验值之间的决定系数分别为0.96、0.89,均方根误差分别为0.97℃、28.35 g,其相关性程度较高,说明该模型能够较准确预测开放式太阳能物料干燥过程中物料表面温度及水分迁移速率,可以用于开放式太阳能干燥的工艺控制。  相似文献   

16.
双孢菇微波冷冻干燥特性及干燥品质   总被引:6,自引:4,他引:2  
为获得干燥时间短、产品质量高的蘑菇制品,采用微波冷冻干燥技术对双孢菇进行干燥处理,研究其在不同微波比功率(0.25,0.5,0.75 W/g)和系统压强(50,100,150 Pa)下的干燥曲线、有效水分扩散系数、复水比、收缩率、白度、维生素C保存率、能耗及基于模糊数学推理法下感官评定的变化规律;通过非线性拟合建立了适用于双孢菇微波冷冻干燥的数学模型;基于干燥能耗、干燥时间及部分品质指标对不同条件下双孢菇微波冷冻干燥过程进行加权综合评价。结果表明:微波比功率对干燥速率及干制品物理品质指标影响比对其他指标的影响更显著(P0.05);系统压强对干制品营养含量指标、干燥能耗以及感官评定的影响比对干燥特性的影响显著(P0.05);采用Henderson and Pabis模型能够准确(R20.9)描述干燥过程中水分变化规律;双孢菇有效水分扩散系数在10-10 m2/s数量级且受微波比功率影响更明显(P0.05);微波比功率和系统压强过高会造成双孢菇干制产品不被消费者接受;当微波比功率和系统压强分别为0.25 W/g和100 Pa时双孢菇微波冷冻干燥的综合评分值最高为0.67847,该条件较适合应用于双孢菇微波冷冻干燥中。研究探索了不同微波冷冻干燥条件下双孢菇干燥及品质特性的变化规律,为双孢菇微波冷冻干燥较优工艺参数组合的选择提供了理论依据。  相似文献   

17.
银耳微波真空干燥特性及动力学模型   总被引:9,自引:6,他引:3  
利用微波真空干燥技术,对银耳微波真空干燥特性进行研究,探讨不同微波强度、真空度及初始含水率对失水速率的影响,其中微波强度对失水速率影响最大。根据试验数据建立银耳微波真空干燥的水分比与干燥时间关系的动力学模型,并对模型进行拟合检验。结果发现银耳微波真空干燥过程符合Page模型,该模型预测值与实测值拟合良好。该模型可以准确预测银耳在微波真空干燥过程中的含水率和失水速率。  相似文献   

18.
玫瑰花的微波真空干燥试验   总被引:2,自引:1,他引:1  
为了提高玫瑰干花品质,减少干燥时间。该研究通过试验性微波真空干燥设备对玫瑰花进行干燥,比较了不同真空度和微波功率对玫瑰干花品质的影响。研究结果表明,真空度越高,物料内水分蒸腾而干燥的速度越快,物料温升越低。随着微波功率增加,干燥时间大大缩短。综合考虑玫瑰干花干燥时间、温度、形态变化和颜色等指标,并与热风干燥相比,选择真空度0.10 MPa,微波功率200 W,干燥时间80 min的微波真空干燥工艺为较适宜的干燥条件,研究结果为玫瑰花的干燥和工业化生产提供一定的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号