首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The starch properties of five low‐amylose rice cultivars, Yawarakomachi, Soft 158, Hanabusa, Aya, and Snow Pearl, were compared with those of two normal amylose rice cultivars, Nipponbare and Hinohikari. There were no large differences in the distributions of the amylopectin chain length determined by high‐performance anion‐exchange chromatography, and the starch gelatinization properties determined by differential scanning calorimetry, between normal and low‐amylose rice cultivars. Results obtained using rapid viscosity analysis indicated that low‐amylose rice starches had lower peak viscosity, breakdown, and setback values than normal amylose rice starches. Starch granules from low‐amylose rice cultivars had a higher susceptibility to glucoamylase than those from normal amylose rice cultivars. The results of this study showed some differences between normal and low‐amylose rice starches in pasting properties and enzymatic digestibility.  相似文献   

2.
Detailed studies of the starch present in tubers of six accessions of Pachyrhizus ahipa (ahipa) have been carried out using starches from tubers of P. erosus (Mexican yam bean) and seeds of ahipa and wheat for comparison. Starch accounted for 56-58% of the tuber dry weight with granules occurring in a range of geometric forms and in sizes from below 5 microm to about 35 microm (mean about 10 microm in all accessions except two). The amylose content ranged from 11.6 to 16.8% compared with 16.9% in P. erosus tubers and over 23% in the seed starches. X- ray diffraction analysis showed A-type or C(A)-type diffraction patterns. The chain-length distribution of the amylopectin after enzyme debranching showed a peak at DP11 similar to that of wheat starch, but had a less marked shoulder at DP 21-22 and contained a higher proportion of longer chains. Differential scanning calorimitry showed an endothermic peak corresponding to gelatinization with T(max) ranging from 59 to 63 degrees C, which was similar to the T(max) of wheat (about 64 degrees C). The composition of the ahipa starch may mean that it is suitable for food applications that require low amylose content and low retrogradation after processing.  相似文献   

3.
Chemical composition, molecular structure and organization, and thermal and pasting properties of maize and potato starches fractionated on the basis of granule size were investigated to understand heterogeneity within granule populations. For both starches, lipid, protein, and mineral contents decreased and apparent amylose contents increased with granule size. Fully branched (whole) and debranched molecular size distributions in maize starch fractions were invariant with granule size. Higher amylose contents and amylopectin hydrodynamic sizes were found for larger potato starch granules, although debranched molecular size distributions did not vary. Larger granules had higher degrees of crystallinity and greater amounts of double and single helical structures. Systematic differences in pasting and thermal properties were observed with granule size. Results suggest that branch length distributions in both amylose and amylopectin fractions are under tighter biosynthetic control in potato starch than either molecular size or amylose/amylopectin ratio, whereas all three parameters are controlled during the biosynthesis of maize starch.  相似文献   

4.
Starch granule composition and amylopectin structure affect starch digestibility, an important factor influencing wheat grain utilization for human food consumption. Six bread wheat cultivars with four belonging to the Canada Western Red Spring (CWRS) and two Canada Prairie Spring Red (CPSR) market classes were analyzed for the relationship between their grain constituents and in vitro enzymatic hydrolysis of starch. CPSR cultivars had higher starch and amylose concentrations compared with CWRS cultivars, which had a higher protein concentration. Starch granule size distribution did not differ among the genotypes, except AC Foremost, which had significantly (P < 0.05) higher volume percent of B‐type starch granules (≈15%) and lower volume percent of A‐type starch granules (≈9%) compared with other cultivars. Fluorophore‐assisted capillary electrophoresis revealed a lower content of R‐IV (DP 15–18, ≈6%) and a higher content of R‐VII (DP 37–45, ≈7%) chains in the CPSR cultivars compared with the CWRS cultivars. Starch in vitro enzymatic hydrolysis showed that compared with CWRS cultivars, the two CPSR cultivars had reduced amounts of readily digestible starch and higher amounts of slowly digestible starch and resistant starch. Consequently, the two CPSR cultivars also showed lower hydrolysis indexes in grain meal as well as extracted starch. CPSR cultivars, with higher starch and amylose concentrations, as well as a higher content of long chains of amylopectin, showed a reduced starch in vitro enzymatic hydrolysis rate.  相似文献   

5.
The objective of this study was to compare gelatinization properties and molecular composition of starches extracted from locally grown organic and conventional spelt using thermal, rheological, and SEC analyses, along with Concanavalin A method. Organic and conventional spelt was planted in six replicated plots, and the extracted starch was analyzed for their gelatinization properties. DSC showed that the gelatinization temperature ranged from 56.7 to 68.8 °C with an average peak of 62.4 °C, with no evidence for statistical difference in gelatinization properties between treatments. Rheological behavior variation among samples was more pronounced than that between the two growing conditions. The amylose content ranged from 23.0% to 29.8%. There was no significant difference in the molecular weight of amylose and amylopectin irrespective of the plot locations, although a significant difference was found between the amylopectin molecular weight of organic and conventional spelt starches when analyzed collectively. The organic spelt starch studied may substitute the conventional starch when gelatinization behavior is considered.  相似文献   

6.
Structures and properties of starches isolated from different botanical sources were investigated. Apparent and absolute amylose contents of starches were determined by measuring the iodine affinity of defatted whole starch and of fractionated and purified amylopectin. Branch chain-length distributions of amylopectins were analyzed quantitatively using a high-performance anion-exchange chromatography system equipped with a postcolumn enzyme reactor and a pulsed amperometric detector. Thermal and pasting properties were measured using differential scanning calorimetry and a rapid viscoanalyzer, respectively. Absolute amylose contents of most of the starches studied were lower than their apparent amylose contents. This difference correlated with the number of very long branch chains of amylopectin. Studies of amylopectin structures showed that each starch had a distinct branch chain-length distribution profile. Average degrees of polymerization (dp) of amylopectin branch chain length ranged from 18.8 for waxy rice to 30.7 for high-amylose maize VII. Compared with X-ray A-type starches, B-type starches had longer chains. A shoulder of dp 18–21 (chain length of 6.3–7.4 nm) was found in many starches; the chain length of 6.3–7.4 nm was in the proximity of the length of the amylopectin crystalline region. Starches with short average amylopectin branch chain lengths (e.g., waxy rice and sweet rice starch), with large proportions of short branch chains (dp 11–16) relative to the shoulder of dp 18–21 (e.g., wheat and barley starch), and with high starch phosphate monoester content (e.g., potato starch) displayed low gelatinization temperatures. Amylose contents and amylopectin branch chain-length distributions predominantly affected the pasting properties of starch.  相似文献   

7.
Effects of heat-moisture treatment (HMT) and lipids on the structure and gelatinization of maize and potato starches were studied, and the retrogradation process of 20% HMT starch gels was also investigated. Maize starch was physically modified by HMT or by defatting. Potato starch was physically modified by HMT or by adding monoglycerides. The X-ray pattern of the HMT maize starch was assigned to a combination of A and V patterns, which indicated that HMT formed crystallized amylose complexes and recrystallized amylose in maize starch granules. However, the X-ray pattern of defatted maize starch did not change for HMT, so the lipids originally existing in starch granules were important to the formation of new crystallites during this treatment. Differential scanning calorimetry (DSC) results suggested that weaker structures in amylopectin crystallites were more susceptible to degradation after HMT, while crystallized amylose complexes developed thermal stability after treatment. The amylose contents increased with increasing degree of HMT, which suggested that the newly created amylose arose from exterior linear chains of amylopectin degraded by the treatment. Investigation of retrogradation process showed that HMT significantly promoted retrogradation of starch gels, especially the initiation of recrystallization.  相似文献   

8.
The relationship between starch physical properties and enzymatic hydrolysis was determined using ten different hulless barley genotypes with variable carbohydrate composition. The ten barley genotypes included one normal starch (CDC McGwire), three increased amylose starches (SH99250, SH99073, and SB94893), and six waxy starches (CDC Alamo, CDC Fibar, CDC Candle, Waxy Betzes, CDC Rattan, and SB94912). Total starch concentration positively influenced thousand grain weight (TGW) (r(2) = 0.70, p < 0.05). Increase in grain protein concentration was not only related to total starch concentration (r(2) = -0.80, p < 0.01) but also affected enzymatic hydrolysis of pure starch (r(2) = -0.67, p < 0.01). However, an increase in amylopectin unit chain length between DP 12-18 (F-II) was detrimental to starch concentration (r(2) = 0.46, p < 0.01). Amylose concentration influenced granule size distribution with increased amylose genotypes showing highly reduced volume percentage of very small C-granules (<5 μm diameter) and significantly increased (r(2) = 0.83, p < 0.01) medium sized B granules (5-15 μm diameter). Amylose affected smaller (F-I) and larger (F-III) amylopectin chains in opposite ways. Increased amylose concentration positively influenced the F-III (DP 19-36) fraction of longer DP amylopectin chains (DP 19-36) which was associated with resistant starch (RS) in meal and pure starch samples. The rate of starch hydrolysis was high in pure starch samples as compared to meal samples. Enzymatic hydrolysis rate both in meal and pure starch samples followed the order waxy > normal > increased amylose. Rapidly digestible starch (RDS) increased with a decrease in amylose concentration. Atomic force microscopy (AFM) analysis revealed a higher polydispersity index of amylose in CDC McGwire and increased amylose genotypes which could contribute to their reduced enzymatic hydrolysis, compared to waxy starch genotypes. Increased β-glucan and dietary fiber concentration also reduced the enzymatic hydrolysis of meal samples. An average linkage cluster analysis dendrogram revealed that variation in amylose concentration significantly (p < 0.01) influenced resistant starch concentration in meal and pure starch samples. RS is also associated with B-type granules (5-15 μm) and the amylopectin F-III (19-36 DP) fraction. In conclusion, the results suggest that barley genotype SH99250 with less decrease in grain weight in comparison to that of other increased amylose genotypes (SH99073 and SH94893) could be a promising genotype to develop cultivars with increased amylose grain starch without compromising grain weight and yield.  相似文献   

9.
Starch structures from an extrusion process were stored at different temperatures to allow for molecular rearrangement (retrogradation); their thermal characteristics (DSC) and resistance to amylase digestion were measured and compared. The structure of four native and processed starches containing different amylose/amylopectin compositions (3.5, 30.8, 32, and 80% amylose content, respectively) before and after digestion was studied with small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD). Rearrangement of the amylose molecules was observed for each storage condition as measured by the DSC endotherm at around 145 degrees C. The crystalline organization of the starches after processing and storage was qualitatively different to that of the native starches. However, there was no direct correlation between the initial crystallinity and the amount of enzyme-resistant starch (ERS) measured after in vitro digestion, and only in the case of high-amylose starch did the postprocess conditioning used lead to a small increase in the amount of starch remaining after the enzymatic treatment. From the results obtained, it can be concluded that retrograded amylose is not directly correlated with ERS and alternative mechanisms must be responsible for ERS formation.  相似文献   

10.
In this study, the functional properties of A‐ and B‐type wheat starch granules from two commercial wheat flours were investigated for digestibility in vitro, chemical composition (e.g., amylose, protein, and ash content), gelatinization, retrogradation, and pasting properties. The branch chain length and chain length distribution of these A‐ and B‐type wheat starch granules were also determined using high‐performance anion exchange chromatography (HPAEC). Wheat starches with different granular sizes not only had different degrees of enzymatic hydrolysis and thermal and pasting properties, but also different molecular characteristics. Different amylose content, protein content, and branch chain length of amylopectin in A‐ and B‐type wheat starch granules could also be the major factors besides granular size for different digestibility and other functional properties of starch. The data indicate that different wheat cultivars with different proportion of A‐ and B‐type granular starch could result in different digestibility in wheat products.  相似文献   

11.
Five cassava genotypes were investigated to identify the fine amylopectin structures and granule chemical compositions, which differentiated the starches into high (T(o) = 63.7 degrees C on average) and low (57.3 degrees C on average) gelatinization temperatures. The amylose contents (15.9-22.4%) and granular dimensions (12.9-17.2 microm) significantly differed among the starches. Diverse amylopectin structural elements resulted in significant swelling power, viscoelastic properties, and gel firmness. Debranched starches revealed a trimodal amylopectin distribution of three fractions: FIII (DP 12), FII (DP 24.31), and FI (DP 63) and FIII (DP 12), FII (DP 24.69), and FI (DP 67) for the low and high gelatinization starch groups, respectively. The higher proportion of FI long chain entanglement with amylose chain lengths to form longer helical structures was confirmed in the high gelatinization starch group, which developed "true" gels with better shear resistance, frequency independence, and higher gel firmness. Significant amounts of resistant starch fractions revealed the potential for application of these genotype starches in diverse foods.  相似文献   

12.
Structural characteristics of native and annealed Peruvian carrot (Arracacia xanthorrhiza) starches were determined and compared to those of cassava and potato starches. Peruvian carrot starch presented round and irregular shaped granules, low amylose content and B-type X-ray pattern. Amylopectin of this starch contained a large proportion of long (DP > 37) and short (DP 6-12) branched chains. These last ones may contribute to its low gelatinization temperature. After annealing, the gelatinization temperatures of all starches increased, but the ΔH and the crystallinity increased only in Peruvian carrot and potato starches. The annealing process promoted a higher exposure of Peruvian carrot amylose molecules, which were more quickly attacked by enzymes, whereas amylopectin molecules became more resistant to hydrolysis. Peruvian carrot starch had structural characteristics that differed from those of cassava and potato starches. Annealing affected the semicrystalline structure of this starch, enhancing its crystallinity, mainly due to a better interaction between amylopectin chains.  相似文献   

13.
Structures and physicochemical properties of six wild rice starches   总被引:2,自引:0,他引:2  
Starches from six wild rice cultivars were studied for their chemical structures and physicochemical properties and compared with a long-grain rice starch. The six wild rice starches were similar in morphological appearance, X-ray diffraction patterns, swelling power, and water solubility index but different in amylose content, beta-amylolysis limit, branch chain length distribution, thermal properties, and pasting properties. The structure of the wild rice amylopectins was close to that of waxy rice amylopectin with more branching and a larger proportion of short branch chains of degree of polymerization 6-12 as compared with that of amylopectin from rice starch with a similar amylose content. The differences in branch chain length distribution of amylopectin and amylose content were assumed to contribute to the differences in physicochemical properties among the six wild rice starches as well as to the differences between the wild rice starches and the rice starch.  相似文献   

14.
Physico-chemical properties and molecular structure of starches from three cultivars (Dog hoof, Mein, and KS01) of taro tubers planted in summer, winter, and spring were investigated. The effects of the planting season on the physico-chemical properties and the molecular structure of starch were determined, and the relations between the physico-chemical properties and the molecular structure of starch are discussed. Results indicate that taro starches from tubers planted in summer had the largest granule size, a low uniformity of gelatinization, and a high tendency to swell and collapse when heated in water. Taro starch planted in summer also showed an elasticity during gelatinization that was higher than that of starches planted in the other seasons. In addition to the planting season and the variety, rheological and pasting properties of taro starches studied are influenced not only by the amylose content but also by the chain-length distribution of amylopectin, whereas swelling power and solubility only depend on the amylose content of starch. Taro starch with relatively high amylose content, high short-to-long-chain ratio, and long average chain length of long-chain fraction of amylopectin displayed high elasticity and strong gel during heating.  相似文献   

15.
Native starch granules of 11 selected cultivars (potato, waxy potato, sweet potato, normal maize, high‐amylose maize, waxy maize, wheat, normal barley, high‐amylose barley, waxy barley, and rice) were treated with a calcium chloride solution (4M) for surface gelatinization. The surface‐gelatinized starch granules were investigated using light microscopy and scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). In general, those starches with larger granule sizes required longer treatment time to complete the gelatinization. The salt solution treatment of starch was monitored by light microscopy and stopped when the outer layer of the granule was gelatinized. The surface gelatinized starch granules were studied using scanning electron microscopy. On the basis of the gelatinization pattern from calcium chloride treatments, the starches could be divided into three groups: 1) starches with evenly gelatinized granule surface, such as normal potato, waxy potato, sweet potato, maize, and high‐amylose maize; 2) starches with salt gelatinization concentrated on specific sites of the granule (i.e., equatorial groove), such as wheat, barley, and high‐amylose barley; and 3) starches that, after surface gelatinization, can no longer be separated to individual granules for SEM studies, such as waxy barley, waxy maize, and normal rice. The morphology of the surface gelatinized starch resembled that of enzyme‐hydrolyzed starch granules.  相似文献   

16.
优质小麦子粒淀粉组成与糊化特性对氮素水平的响应   总被引:1,自引:0,他引:1  
在大田条件下,选用3个不同类型优质小麦品种: 豫麦47(强筋品种)、山农8355(中筋品种)和豫麦50(弱筋品种),设置3个氮肥水平: 施N 0、15和30 g/m2,研究了小麦子粒淀粉的粒度分布、直支链淀粉组成、糊化特性及其对氮素水平的响应。结果表明,优质小麦子粒中淀粉粒的粒径分布范围为1~45 μm,其数目分布呈单峰或双峰曲线变化,体积和表面积分布均呈双峰曲线变化,峰谷位于10 μm处; 据此可将淀粉粒分为两种类型: A型大淀粉粒(10~45 μm)和B型小淀粉粒(1~10 μm)。优质小麦子粒淀粉粒组成存在显著的基因型差异。强筋品种豫麦47子粒中B型淀粉粒的比例较高,弱筋品种豫麦50子粒中A型淀粉粒的比例较高,中筋品种山农8355居中。施氮水平对优质小麦子粒中淀粉的粒度分布存在显著影响。在本试验条件下,随氮素水平的提高,强筋品种豫麦47子粒中A型淀粉粒的比例提高,而B型淀粉粒的比例下降; 增施氮肥后弱筋品种豫麦50和中筋品种山农8355子粒中B型淀粉粒的比例增大,而A型淀粉粒的比例降低,且前者变化的幅度较大。适量增施氮肥提高优质小麦子粒中的淀粉含量,氮肥用量进一步增大后,淀粉含量降低; 增施氮肥后优质小麦子粒中直链淀粉含量降低。增施氮肥对优质小麦子粒淀粉的糊化特性存在较大影响,且此影响的趋势因基因型和施氮量而异。其中强筋品种豫麦47表现为低谷粘度、最终粘度、反弹值、糊化温度和峰值时间提高,而高峰粘度和稀懈值降低; 当氮肥用量增大至30 g/m2时,糊化温度和峰值时间降低,而以粘度为单位的参数均提高。弱筋品种豫麦50表现为增施氮肥后,RVA参数呈下降趋势,与之相对应中筋品种山农8355的呈上升趋势。相关性分析表明,B型淀粉粒的数目、体积和表面积比例与高峰粘度和稀懈值存在显著正相关; 与低谷粘度、最终粘度和反弹值存在显著负相关。子粒中直链淀粉含量、支链淀粉含量和总淀粉含量与高峰粘度和稀懈值呈显著负相关,与低谷粘度、最终粘度、反弹值和峰值时间呈一定程度正相关; 直链淀粉相对含量与RVA特征参数之间的相关趋势与子粒中直链淀粉含量的趋势一致,但均未达显著水平。由此可以认为,氮肥通过调控小麦子粒中淀粉的直、支链组成和粒度分布而影响其糊化特性。  相似文献   

17.
Physical properties of resistant starch (RS) were examined in a range of barley genotypes to determine the contribution of starch and seed physical characteristics to the RS component. Thirty‐three barley genotypes were studied, which varied significantly in their RS, amylose, and starch contents and grain yield. From 33 genotypes, 13 exhibiting high RS were selected for detailed physicochemical analysis of starch. In high‐RS varieties, granule size and number were unimodal, compared with normal starches from a reference genotype, which showed a bimodal distribution. Principal component analysis (PCA) showed that a higher content of granules <15 µm was positively correlated with RS and amylose content, whereas the proportion of granules 15–45 µm was negatively correlated with the RS and amylose contents. Physical fractionation of starches by centrifugation into different population sizes demonstrated that size alone is not an accurate indicator of the population of A‐type and B‐type granules within a given genotype. PCA also showed that large 15–45 µm granules were positively correlated with seed thickness and that thousand grain weight was positively correlated with seed width. High‐RS and high‐amylose genotypes showed variation in overall yield and starch content, with some genotypes showing yield comparable to the reference genotype. Analysis of amylopectin chain length distribution showed that high amylose or RS content was not associated with a higher proportion of amylopectin long chains when compared with either waxy or reference (normal) barley genotypes. This study highlights useful markers for screening barley genotypes with favorable starch characteristics.  相似文献   

18.
Amylose and amylopectin were prepared from large, medium, and small granule starches of classified waxy barley flour, and their fine structures were investigated. The amylose content had a wide distribution range (≈1.4–9.4%). Number‐average degrees of polymerization (DPn) of the amyloses were similar among the samples (≈1,200–1,300). But number of chains per molecule (NC) decreased from the surface to the center (≈6–10 chains). DPn of the amylopectins varied from 4,657 to 14,604; decreased in the order of large, medium, and small granules in same fractions of the grain; and increased from the surface layer to the center. Longest chains (LC) were not found in any of the amylopectin molecules. The large amylopectin molecule had more long chains and fewer A chains than the small molecule. The amylose content had definite effects on the transition temperature range and crystal formation of the starch granules. There were positive correlations between DPn of the amylopectin and relative crystallinity (γ = +0.69) and enthalpy value (γ = +0.80), respectively. These findings may help to elucidate biosynthesis mechanism of starch.  相似文献   

19.
The degradation rates of rice and corn starches with different contents of amylose treated in methanol containing 0.36% HCl at 25 degrees C for 1-15 days were evaluated by monitoring the weight average degree of polymerization of starch. A two-stage degradation pattern during acid-methanol treatment was found for the starches studied, which were the slow (first) and the rapid (second) degradation stages. Waxy starches showed a shorter time period of the first stage than that of nonwaxy starch. Rice starch showed a shorter time period of the first stage and a higher degradation rate of the second stage than the counterpart corn starch with similar amylose content. Despite the botanic source and amylose content of starch, the degradation rate of starch in the second stage significantly (p < 0.05) correlated to the S/L ratio (r = -0.886) and polydispersity (r = 0.859) of amylopectin branch chains of native starch.  相似文献   

20.
It has long been recognized that limitations exist in the analytical methodology for amylose determination. This study was conducted to evaluate various amylose determination methods. Purified amylose and amylopectin fractions were obtained from corn, rice, wheat, and potato and then mixed in proportion to make 10, 20, 30, 50, and 80% amylose content starch samples for each source. These samples, considered amylose standards, were analyzed using differential scanning calorimetry (DSC), high-performance size-exclusion chromatography (HPSEC), and iodine binding procedures to generate standard curves for each of the methods. A single DSC standard equation for cereal starches was developed. The standard curve of potato starch was significantly different. Amylose standard curves prepared using the iodine binding method were also similar for the cereal starches, but different for potato starch. An iodine binding procedure using wavelengths at 620 nm and 510 nm increased the precision of the method. When HPSEC was used to determine % amylose, calculations based on dividing the injected starch mass by amylose peak mass, rather than calculations based on the apparent amylose/amylopectin ratio, decreased the inaccuracies associated with sample dispersion and made the generation of a cereal amylose standard curve possible. Amylose contents of pure starch, starch mixtures from different sources with different amylose ranges, and tortillas were measured using DSC, HPSEC, iodine binding, and the Megazyme amylose/amylopectin kit. All the methods were reproducible (±3.0%). Amylose contents measured by these methods were significantly different (P < 0.05). Amylose measurements using iodine binding, DSC, and Megazyme procedures were highly correlated (correlation coefficient >0.95). DSC and traditional iodine binding procedures likely overestimated true amylose contents as residual butanol in the amylose standards caused interference. The modified two-wavelength iodine binding procedure seemed to be the most precise and generally applicable method. Each amylose determination method has its benefits and limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号