首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于扩散/渐缩管流动特性,提出一种用于无阀压电泵的 "V"型管,以满足微型全分析系统等应用需求.阐述了"V"型无阀压电泵的结构,对"V"型无阀压电泵内的流阻特性进行理论分析.通过采用有限元法对"V"型管进行模拟计算,研究"V"型管的结构参数对其流阻特性的影响.研究表明:"V"型管的分流角、扩散角以及进口宽度对其流阻特性影响较大,"V"型管的长度对其流阻特性影响较小;较大的"V"型管深度有利于提高泵的效率.  相似文献   

2.
何秀华  张睿 《排灌机械》2008,26(4):30-34
基于无阀压电泵中扩散/渐缩管流动特性,提出一种用于无阀压电泵的新型“V”形管,以满足微型全分析系统的应用要求.阐述了“V”形无阀压电泵的结构和工作原理,对“V”形无阀压电泵内的流动进行理论分析,得到了“V”形无阀压电泵的平均流量计算公式和效率公式.采用有限元方法对“V”形管进行模拟计算,得到了“V”形管内正反流动的压力分布,发现“V”形管正反流动的速度存在差异.通过分析得出最优分流角与扩散角.在不同进出口压力差下,对“V”形管、并联扩散管以及"Y"形管的压力损失系数比进行比较,发现前两者压力损失系数比曲线变化趋势具有一致性,证明了“V”形管数值模拟的可靠性.数值计算结果对“V”形无阀压电泵优化设计具有指导意义.  相似文献   

3.
无阀压电泵的泵送性能主要取决于管道系统中的正、反向流阻差值,因而对流阻的测试尤为重要。为此设计了能够实现自动或半自动上水功能的无阀压电泵流阻测试装置,该装置测试液体的流速范围较宽,易于分析、研究流阻作用规律;以半球缺阀为例推导了阻力系数公式;利用新、旧2种测试装置对半球缺阻流体无阀压电泵的流阻进行了测试并计算了泵理论流量,与试验流量的偏差分别为34.38%、117.33%。研究表明:无阀压电泵流阻测试装置极大地提高了流阻测试精度;能够进行流阻测试、分析、泵理论流量计算及试验流量的预测。  相似文献   

4.
半球缺的排列方式、数量及间距直接影响半球缺无阀泵的泵送性能。通过对泵理论流量的推导,揭示了半球缺无阀泵具有泵送流体性能的机理;通过对纵向及横向排列半球缺数量及间距的变化对流场及仿真流量影响的研究,发现半球缺排列方式、间距及数量的改变其实质是改变了半球缺的反正向流阻差这一重要现象;探明了减小横向间距、适当增加纵向间距及适当间距范围内增加半球缺的数量均能提高泵流量的重要规律;最后,通过泵流量试验验证了仿真结论的正确性:以安装有4个纵向及横向等间距10 mm排列半球缺的泵进行试验,分别得到了48.29 m L/min、50.29 m L/min的试验流量,与仿真流量的偏差分别为34.6%、34.0%,进一步验证了相同条件下增加横向排列半球缺数量能获得更好的泵送效果。  相似文献   

5.
提出一种基于附壁效应的无阀压电泵,该泵利用附壁射流元件造成吸入过程和排出过程中进出口的流量差,实现流体输送。首先通过动网格技术及数值模拟研究微泵的内部流场和外特性,结果表明该无阀压电泵的容积效率η可以达到0.5以上,高于传统扩散/收缩管无阀压电泵。然后讨论了平面锥管长度和两分流直管间凹劈面宽度对微泵性能的影响,平面锥管长度L1必须大于dcot(θ/2),当c2/c1=1时L1/d=9的微泵在零输出压力下流量最大;不同输出压力和c2/c1的微泵流量对比表明凹劈面宽度越宽微泵输出压力性能越佳,但是在低输出压力下微泵随着凹劈面宽度的增加其容积效率降低。最后应用响应面方法对平面锥管长度和凹劈面宽度进行优化,结果表明当输出压力为5 k Pa时,最优的参数选取范围为4≤L1/d≤5,0.75≤c2/c1≤0.85,当L1/d=4.3,c2/c1=0.80时η达到最大,为0.323。其数值模拟为0.317,相差1.89%。  相似文献   

6.
何秀华  李富  毕雨时  邓志丹  王健 《排灌机械》2012,(2):153-156,166
为了提高泵送流量,获得连续、低脉动的输出特性,设计了一种单振子双腔体V形管无阀压电泵,并建立其几何模型,对其工作原理进行了简要介绍,采用Fluent软件的动网格模型对其内部流动进行数值分析.对压电泵内部流场进行动态模拟,得到不同时期压电泵内部的压力、速度及瞬时流量等动态特征,将双晶片压电振子的动态特征和流体的运动特征有机地结合在一起,结果与压电泵的工作原理相吻合,验证了动网格模型应用于压电泵数值模拟计算的可行性.通过大量的数值模拟研究了驱动频率、压电振子振幅、泵腔高度和V形管位置对单振子双腔体V形管无阀压电泵输出性能的影响.模拟结果表明:驱动频率为250Hz时单振子双腔体V形管无阀压电泵的出口流量最大;压电振子振幅越大,出口流量越大;合理选择一组振幅值、泵腔高度和管道位置,便可得到压电泵的最优输出性能.  相似文献   

7.
分析了V形管内的流动损失,并初步优化V形管无阀压电泵结构,利用CFD软件对改进前后的V形管内流场进行了数值模拟,结果表明:直角汇流管口改为圆角后的V形管流阻系数有了明显提高.通过对比改进前后两种V形管流场速度矢量图,发现圆角V形管可抑制正向流动时管内回流和漩涡的发生,减小流动损失.对不同圆角半径的V形管内流场进行数值模拟,得到不同圆角半径V形流管的流阻系数,表明较大的圆角半径可有效地提高V形管流阻系数,即提高了V形管无阀压电泵的效率.此优化设计可为V形管压电泵的进一步改进提供思路.  相似文献   

8.
无阀压电泵用平面锥管内部流动特性   总被引:1,自引:0,他引:1  
为了研究锥管的流阻特性,采用数值模拟的方法对最小截面宽度为150μm,高度为150μm的平面锥管进行分析,得到雷诺数在100~2 000范围内,收缩方向流阻系数与扩散方向流阻系数的比值λ随锥角θ及流管长宽比l/w变化的规律.结果表明:流管锥角越小,θ及l/w对λ值的影响越大,且流管的流阻特性随θ和l/w的变化发生了转换;在Re=100与Re≥500两种工况下,流管扩散方向流阻系数ξd随θ及l/w的变化趋势相反;Re=100时,流管多呈沿扩散方向流阻较小的Ⅰ类流管特性,θ=20°,l/w=20的流管的λ值最大达到1.22;Re≥500时,流管多呈沿收缩方向流阻较小的Ⅱ类流管特性,θ=20°,l/w=1的流管的λ值最小达到0.63.说明不同雷诺数流动下流管的流阻特性相差较大,不同工况下可通过选用合适的流管结构参数提高无阀压电泵的工作效率.  相似文献   

9.
半球缺群相比于单一的半球缺具有更好的正、反向流体阻力不等特性,为分析其流阻变化对泵送性能的影响,对泵腔内半球缺群的行数、列数及行列间距的变化进行了研究。推导出半球缺群的正、反向阻力系数作用规律,流阻试验及泵流量试验验证了该规律分析计算流阻及泵流量的可行性;在有限行、列间距范围内,计算及试验流阻差及泵流量均随半球缺群行数、列数的增加而增加;在驱动电压及频率为120 V、6 Hz时,半球缺群3×4、4×3、4×4行列分别获得45.5 m L/min、46.2 m L/min、47.75 m L/min泵流量;理论与试验流量的最大偏差为23.23%。研究表明,半球缺群的流阻作用规律可以用来分析及预测泵流量;增加行数及列数并适当控制行、列间距均能提高泵流量,且增加行数比增加列数能获得更好的输出效果。  相似文献   

10.
设计了一种以Cymbal振子为驱动器的新型无阀微压电泵.研究了Cymbal振子的工作过程.在Cymbal振子有限单元模型的基础上,对其工作过程进行仿真分析.通过模态分析得到了Cymbal振子的前5阶固有频率和振型,选出其中最符合工作要求的频率和振型;通过瞬态分析.结合压电耦合分析,得到了振子在方波电压作用下的瞬态动力学特性.  相似文献   

11.
为分析阻流体无阀压电泵用半球缺横向排列的流阻特性及对泵输出性能的影响,对泵腔内多个半球缺横向排列的流阻作用规律进行了研究。基于单个半球缺绕流阻力的研究成果,在分析横向排列半球缺的影响因素基础上,通过试验得出了两个半球缺横向排列流阻干扰系数及绕流阻力系数的作用规律;进而推导了多个半球缺横向流阻干扰系数及绕流阻力系数的理论计算;通过对4个横向排列半球缺的流阻及泵流量试验,验证了该理论推导用于分析、预测半球缺阻流体无阀压电泵流阻特性和理论流量的可行性。在驱动电压为120 V、驱动频率为6 Hz时,得到了44.78 mL/min的泵流量,理论和试验流量的平均偏差为39.34%。  相似文献   

12.
并联三通全扩散/收缩管无阀压电泵的性能   总被引:2,自引:0,他引:2  
采用流固耦合的方法,对三通全扩散/收缩管单腔无阀微泵进行了数值模拟计算,并进行试验验证,结果表明:当激励电压幅值为100 V时,在50~175 Hz范围内,微泵的流量随频率的增大而增大,计算值与试验值的最大误差为12%;当确定频率为100 Hz时,微泵流量随电压的增大而线性增大;试验结果较好地验证了数值模拟方法的可行性.在此基础上,针对单腔无阀微泵低流量、低输出压力的缺点,设计并研究了基于三通全扩散/收缩管的并联结构无阀压电泵.应用上述数值模拟方法,分析了并联结构下两振子振动相位差对微泵流量的影响,绘制出了不同相位差下并联微泵流量图和微泵在1个周期内瞬时流量图,并与单腔结构的微泵进行了性能对比.结果表明:并联结构下微泵流量随振子振动相位差的变化不大;在相位差为180°时流量最大,为0.367 mL/min;在相位差为360°时微泵实现了流量的连续输送,其流量为0.349 mL/min,性能较单腔结构微泵有了较大的提高.  相似文献   

13.
针对传统扩散/收缩管无阀压电泵效率低的不足,提出一种新型三通全扩散/收缩管无阀压电泵.为了寻求新型三通全扩散/收缩管流管的最佳几何尺寸参数,在有限元仿真试验方法的基础上,将新型三通全扩散/收缩管与传统扩散/收缩管进行性能对比分析.分别改变三通全扩散/收缩管的分流锥管长度L2、分流锥管夹角φ、分流锥管的锥角2θ和分流锥管宽度b2,研究分流锥管结构参数对三通全扩散/收缩管流阻特性的影响.结果表明,相对于传统扩散/收缩管,三通全扩散/收缩管的反向流阻系数与正向流阻系数之比λ在较高雷诺数下大于传统扩散/收缩管,可提高无阀压电泵的效率;在不同雷诺数流动下,三通全扩散/收缩管的最优结构参数相差较大,设计时必须要根据实际工况选用合适的结构参数.  相似文献   

14.
邓志丹  何秀华  杨嵩  李富 《农业机械学报》2013,44(9):284-288,278
为了提高无阀压电泵中流管的流阻特性,提出一种新型椭圆组合管结构。该流管为三通结构,汇流管是传统扩散/收缩管,分流管是椭圆曲线结构的扩散/收缩管。通过数值模拟,应用正交方法优化椭圆组合管的结构参数。设计选用的汇流管最小宽度d=150μm,流管深度H=150μm,优化结果表明当进出口压差为50kPa时,结构尺寸为r=75μm,L=3000μm,θ=7°,γ=80°,a=1000μm,b=450μm的椭圆组合管有最高的正反向流阻系数比λ。通过MEMS技术制作出优化后的椭圆组合管并进行试验,并与数值模拟结果对比。结果表明:试验值小于模拟值,压差在10~100kPa范围内,正向流量试验值与模拟值最大相差12.6%,反向流量两者最大相差5.3%;压差为50kPa时,两者的λ值分别为1.83和1.97,相差7.65%。  相似文献   

15.
16.
综述了国内外压电泵的研究与进展,通过比较被动阀压电泵与主动阀压电泵的工作原理,提出了主动阀压电泵潜在的应用价值。依据工作原理,设计、制作了由压电振子分别作为泵驱动源和进、出口阀的主动阀压电泵,并对泵的驱动信号进行了研究。性能测试结果:在140 Hz下,主动阀压电泵的最大输出流量为40 ml/min,最大输出压力为12.25 kPa。结果表明:主动阀压电泵的性能、单向截止性及执行效率明显优于被动阀压电泵。  相似文献   

17.
单振子气体压电泵研究   总被引:4,自引:1,他引:3  
对单振子压电驱动微型气泵进行了结构设计,并对其主要构件单向阀进行了动力学建模与仿真分析,在此基础上制作了微型气泵样机,并进行了测试实验。设计的单振子压电气泵以中间开孔的压电双晶片为动力源,利用粘结在压电片孔上的单向阀来截止流体。泵的进、出口在压电片的两侧,以压电振子的振动动能直接驱动单向阀产生与泵腔容积变化相应的打开/关闭动作,与传统的进、出口在同侧、仅依靠单向阀两侧的压差驱动单向阀工作的压电气泵相比流阻小,且具有很好的单向截止性,并提高了气体输出流量和单向截止阀响应频率。实验证明当驱动电压为40 V、频率为1 000 Hz时,输出流量可达到720 mL/min。  相似文献   

18.
19.
基于无阀压电泵中扩散/渐缩管流动特性,提出一种新型“V”形管.为了获得“V”形管最佳的流阻性能,对“V”形管的结构参数进行优化设计.基于正交设计法,采用有限元仿真的试验方法,设计了一个四因素三水平的正交方案,并对仿真试验所获得的数据进行极差分析,得到了各几何参数对“V”形管流阻系数影响的主次顺序,同时获得较合理的新方案.通过进行再设计和分析,并与正交方案进行对比,最终验证了新方案是最优方案,为“V”形管无阀压电泵的优化设计提供了一定的参考.  相似文献   

20.
设计了一涡旋阀压电泵,采用动网格模型对其进行数值分析.首先对涡旋阀压电内部流场进行了动态模拟,得到了不同时期压电泵内的速度和静压分布图,有效地将压电振子的动态特征和流体的运动特征进行了间接流固耦合分析,验证了动网格模型在研究压电泵运动边界方面的可行性.研究了驱动频率,压电振子振幅,泵腔高度对涡旋阀压电泵输出性能的影响,发现驱动频率越小,压电振子振幅越大,出口体积流量越大,泵腔高度约为250μm,出口流量达到最大值.此外,还分别对涡旋阀和涡旋阀压电泵进行了空化模拟,得到了空化时涡旋阀内和不同时刻泵腔中的气液分布,为有效预测压电泵腔内空化,抑制空化现象提供了一定依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号