首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
During the next three decades, Asia will remain the largest food consumer (increasing from 40 to 55% of the global consumption between 2000 and 2015) and the largest source of greenhouse gas (GHG) from agriculture (about 50% of the total emissions). The growth of food demand in Africa and South America will cause substantial increase in GHG emissions by the agri-food sector, unless improved management systems are adopted. The higher food consumption rate (kJ person−1 day−1) around the world is primarily a result of improved crop production and higher percentage of animal products in diet. The latter will, however, result in more CH4 emissions. The growing use of N fertilizers is also a concern. The part not taken up by crops (more than 50%) is either lost through leaching or released to the atmosphere as N gases including nitrous oxide. Between 2000 and 2030, the total GHG emissions are expected to increase by about 50%, with further impact on weather and climate. Mitigation techniques such as improved feed quality for a better digestibility, improved manure management, greater N use efficiency, better water management of rice paddies and/or by increasing the role of agro-forestry in agriculture, have to be considered in order to minimize the impact of agriculture on climate.  相似文献   

3.
The aim of this paper is to assess the greenhouse gas (GHG) mitigation potential of croplands and grasslands in Great Britain under different management practices. We consider the feasible land management options for grass and cropland using county level land‐use data with estimates of per‐area mitigation potential for individual and total GHGs, to identify the land management options with the greatest cost‐effective mitigation potential. We show that for grasslands, uncertainties still remain on the mitigation potential because of their climatic sensitivity and also their less intensive management. For croplands in Great Britain, the technical mean GHG mitigation potentials for all cropland management practices range from 17 Mt CO2‐eq. per 20 yr to 39 Mt CO2‐eq. per 20 yr. There are significant regional variation in all cases, with the greatest potentials in England, negligible potential in Wales and intermediate potential in Scotland, with country differences largely driven by the areas of cropland and grassland in each country. Practices such as agronomic improvement and nutrient management are the most promising options because of their impact on N2O emissions and also their larger potential at low cost. In terms of annual emissions from agriculture, calculated mitigation potentials are small, where the technical mitigation potential of agronomy and nutrient management strategies are ca. 4.5 and 3.8%, respectively (agricultural emissions account for ca. 9% or 47.7 Mt CO2‐eq., of total Great Britain GHG emissions, Department of Energy and Climate Change, UK). However when compared with the land use, land‐use change and forestry sector (LULUCF) emissions, nutrient management would reduce further emission reductions by approximately half of the 2005 LULUCF sink (i.e. ?1.6 Mt CO2‐eq. per year).  相似文献   

4.
中国大中型沼气工程温室气体减排效益分析   总被引:18,自引:5,他引:18  
大中型沼气工程是中国可再生能源建设的重点项目,可提供清洁能源、减轻农村环境污染,具有良好的环境效益,同时也可减少CO2、CH4等温室气体排放,缓解全球变暖趋势.该文根据国际通用的减排量计算方法,对1996~2005年间中国大中型沼气工程所带来的主要温室气体减排量和减排效益进行了计算分析.结果表明:2005年,中国大中型沼气工程减少CO2排放0.54×106~1.51×106t,减少CH4排放1.53×105t(CO2当量),以国际市场价格计,中国大中型沼气工程减少CO2和CH4排放可实现1.16×108~2.69×108元(RMB)的经济效益.根据<可再生能源中长期发展规划>预测,2010和2020年中国大中型沼气工程的CO2减排量可分别达到0.56×107~1.71×107 t和1.95×107~5.99×108 t,CH4减排量分别达到1.79×106 t和6.28×106 t,减少主要温室气体(CO2,CH4)排放的经济效益可分别达1.17×109~3.00×109元和0.41×1010~1.05×1010元.中国大中型沼气工程建设可有效减少CO2和CH4等温室气体的排放,基于清洁发展机制具有显著的经济效益.  相似文献   

5.
中国农业源温室气体排放与减排技术对策   总被引:66,自引:12,他引:66  
农业是重要的温室气体排放源。该文通过对文献资料和大量研究结果进行分析,得出中国农业活动产生的甲烷和氧化亚氮分别占全国甲烷和氧化亚氮排放量的50.15%和92.47%,农业源占全国温室气体排放总量的17%;通过改善反刍动物营养可降低单个肉牛甲烷排放15%~30%;推广稻田间歇灌溉可减少单位面积稻田甲烷排放30%;一个户用沼气每年最大可减少温室气体2.0~4.1 t二氧化碳当量;推行缓释肥、长效肥料可减少单位面积农田氧化亚氮50%~70%。该文建议尽快开展减排技术示范,对减排技术的适应性和经济性进行评价。  相似文献   

6.
中国东北休闲期稻田温室气体排放   总被引:2,自引:0,他引:2  
CH4, N2O and CO2 emissions from northeast Chinese rice fields were measured in the fallow season (November to March) to investigate the effects of freezing-thawing on the emissions. Both CH4 emission from and atmospheric CH4 oxidation by the soil occurred, but the flux was small. During the fallow season, rice fields acted as a minor source of atmospheric CH4, which accounted for about 1% of the CH4 emission during the rice growing period. The field was also a substantial source of atmospheric N20, which ranged between 40 to 77 mg m-2 and eu=counted for 40%-50% of the annual N20 emission. The largest N20 flux was observed in the thawing period during the fallow season. Laboratory incubation tests showed that the largest N20 flux came from the release of N20 trapped in frozen soil. Tillage and rice straw application (either mulched on the soil surface or incorporated in the soil) stimulated the CH4 and CO2 emissions during the fallow season, but only straw application stimulated N2O emission substantially.  相似文献   

7.
Greenhouse gas emissions from farmed organic soils: a review   总被引:14,自引:0,他引:14  
Abstract. The large boreal peatland ecosystems sequester carbon and nitrogen from the atmosphere due to a low oxygen pressure in waterlogged peat. Consequently they are sinks for CO2 and strong emitters of CH4. Drainage and cultivation of peatlands allows oxygen to enter the soil, which initiates decomposition of the stored organic material, and in turn CO2 and N2O emissions increase while CH4 emissions decrease. Compared to undrained peat, draining of organic soils for agricultural purposes increases the emissions of greenhouse gases (CO2, CH4, and N2O) by roughly 1t CO2 equivalents/ha per year. Although farmed organic soils in most European countries represent a minor part of the total agricultural area, these soils contribute significantly to national greenhouse gas budgets. Consequently, farmed organic soils are potential targets for policy makers in search of socially acceptable and economically cost-efficient measures to mitigate climate gas emissions from agriculture. Despite a scarcity of knowledge about greenhouse gas emissions from these soils, this paper addresses the emissions and possible control of the three greenhouse gases by different managements of organic soils. More precise information is needed regarding the present trace gas fluxes from these soils, as well as predictions of future emissions under alternative management regimes, before any definite policies can be devised.  相似文献   

8.
农业是温室气体的主要排放源.就碳减排途径来看,在元素循环过程中增加土壤碳汇则更具有可操作性.通过农地转化将不适于耕作的农地退耕还林还草、控制水土流失可以减少我国的土壤碳储量损失,并使植物碳储量也得到增加.成本-收益分析表明,排放政策应以不妨碍经济增长、不减少农户收入为前提.实证表明,构建具有我国特色的温室气体减排的土地利用经济机制,其前提就是保证农民收入的稳定增长,才会具有较好的可操作性.建立完善的补偿机制是温室气体减排长效机制的基本保障.农业温室气体减排必须建立激励型生态补偿机制,从根本上提高农户温室气体减排的积极性.文章最后提出了温室气体减排的土地利用经济机制的相关配套措施.  相似文献   

9.

Background

The sustainability of bioenergy is strongly affected by direct field-derived greenhouse gas (GHG) emissions and indirect emissions form land-use change. Marginal land in low mountain ranges is suitable for feedstock production due to small impact on indirect land-use change. However, these sites are vulnerable to high N2O emissions because of their fine soil texture and hydrology.

Aims

The perennial cup plant (Silphium perfoliatum L.) might outperform silage maize (Zea mays L.) on cold, wet low mountain ranges sites regarding yield and ecosystem services. The aim of this study was to assess whether the cultivation of cup plant also provides GHG mitigation potential compared to the cultivation of maize.

Methods

A t-year field experiment was conducted in a low mountain range region in western Germany to compare area and yield-scaled GHG emissions from cup plant and maize fields. GHG emissions were quantified using the closed chamber method.

Results

Cup plant fields emitted an average of 3.6 ± 4.3 kg N2O-N ha–1 year–1 (–85%) less than maize fields. This corresponded to 74.0 ± 94.1 g CO2-eq kWh–1 (–78%) less emissions per produced electrical power. However, cup plant had a significantly lower productivity per hectare (–34%) and per unit of applied nitrogen (–32%) than maize.

Conclusion

Cup plant as a feedstock reduces direct field-derived GHG emissions compared to maize but, due to lower yields cup plant, likely increases emissions associated with land-use changes. Therefore, the increased sustainability of bioenergy from biogas by replacing maize with cup plant is heavily dependent on the performance of maize at these sites and on the ecosystem services of cup plant in addition to GHG savings.  相似文献   

10.
Ethanol production results in distiller grain, and biodiesel produces glycerol as by-product. However, there is limited information on effects of their addition on evolution of N2O and CO2 from soils, yet it is important to enable our understanding of impacts of biofuel production on greenhouse gas budgets. The objective of this study was to evaluate the direct effects of adding wet distillers grain (WDG), thin stillage (TS), and glycerol at three rates on greenhouse gas emissions (N2O and CO2) and nutrient supply rates in a cultivated soil from the Canadian prairies. The WDG and TS application rates were: 100, 200, or 400 kg N ha?1, whereas glycerol was applied at: 40, 400, or 4,000 kg C ha?1 applied alone (G???N) or in a combination with 300 kg N ha?1 (G?+?N). In addition, conventional amendments of urea (UR) and dehydrated alfalfa (DA) were added at the same rates of total N as the by-products for comparative purposes. The production of N2O and CO2 was measured over an incubation period of 10 days in incubation chambers and Plant Root Simulator? resin membrane probes were used to measure nutrient (NH 4 + -N, NO 3 ? -N, and PO 4 ?3 -P) supply rates in the soil during incubation. Per unit of N added, urea tended to result in the greatest N2O production, followed by wet distillers grain and thin stillage, with glycerol and dehydrated alfalfa resulting in the lowest N2O production. Cumulative N2O production increased with increasing the rate of N-containing amendments and was the highest at the high rate of UR treatment. Addition of urea with glycerol contributed to a higher rate of N2O emission, especially at the low rate of glycerol. The DA and WDG resulted in the greatest evolution of CO2 from the soil, with the thin stillage resulting in less CO2 evolved per unit of N added. Addition of N fertilizer along with glycerol enhanced microbial activity and decomposition. The amendments had significant impacts on release of available nutrient, with the UR treatments providing the highest NO 3 ? -N supply rate. The TS treatments supplied the highest rate of NH 4 + -N, followed by WDG compared to the other amendments. The WDG treatments were able to provide the greatest supply of PO 4 ?3 -P supply in comparison to the other amendments. Microbial N immobilization was associated with glycerol treatments applied alone. This study showed that the investigated biofuel by-products can be suitable soil amendments as a result of their ability to supply nutrients and N2O emissions that did not exceed that of the conventional urea fertilizer.  相似文献   

11.
大型秸秆沼气集中供气工程温室气体减排估算   总被引:1,自引:0,他引:1  
发展秸秆沼气工程可有效地减少农业温室气体排放,科学核算温室气体减排量为管理和监督温室气体排放状况提供数据支撑。该文以河北省沧州市耿官屯大型秸秆沼气集中供气工程为研究对象,参考和借鉴了自愿减排项目方法学、CDM方法学,构建了大型秸秆沼气集中供气工程温室气体减排计量方法,包括项目边界、基准线排放量、项目排放量、泄漏量、减排量5个方面,计算了2014年耿官屯大型秸秆沼气集中供气工程温室气体减排量。研究结果表明:项目基准排放量包括秸秆处理产生的温室气体排放、未建秸秆沼气工程情况下农村居民生活用能及农田施用化肥生产耗能产生的温室气体排放。项目排放量包括秸秆与沼肥运输过程耗能排放、工程运行过程耗能排放及沼气处理温室气体排放,项目泄漏量即沼气生产、储存、管网供气和利用过程中产生的因物理泄漏所造成的排放。2014年耿官屯大型秸秆沼气集中供气工程基准线CO2排放量为5 776.15 t,项目排放量为57.53 t,泄漏量为136.59 t,减排量为5 582.03 t,约相当于2 100 t标准煤CO2排放量,每消耗1 t(干质量)秸秆可净减排3.56 t,每利用1 m3沼气可净减排11.50 kg。同时,在工程设计、管道设计、工程管理、工艺技术改良升级等方面提出了提升大型秸秆沼气工程温室气体减排能力的策略。  相似文献   

12.
利用整体分析法研究华北地区奶牛产业温室气体排放   总被引:1,自引:1,他引:0  
为了研究奶牛产业生产效率对温室气体排放的影响,对单位牛奶产量所产生的温室气体(甲烷、氧化亚氮和二氧化碳)进行科学的评估是非常重要的。在该研究中,利用整体分析方法评估了2012年华北地区奶牛产业的总温室气体排放以及单位牛奶的温室气体排放。估算的排放源包括奶牛胃肠道发酵以及粪便管理系统产生的温室气体(greenhouse gas,GHG)排放、奶牛饲养过程中耗能所带来的GHG排放、饲养奶牛所需作物种植管理过程中以及所需农业机械设备制造所产生的GHG排放、化学肥料生产和施用所来的GHG排放。估算方法采用政府间气候变化专门委员会(IPCC,Intergovernmental Panel on Climate Change)评估报告中的方法学以及相关文献的研究成果。研究结果表明:在华北地区奶牛产业系统中总温室气体排放量为22437.85×103t。甲烷(CH4)是主要的排放源,为8516.53×103 t,其中奶牛胃肠道排放占84%,粪便管理系统占16%;氧化亚氮(N2O)排放为6240.27×103 t,二氧化碳(CO2)排放为7681.05×103 t。基于排放强度,得出单位牛奶的平均温室气体排放量为1.3 kg/kg。  相似文献   

13.
为了研究耕作措施对双序列轮作农田土壤温室气体的排放及影响, 采用CO2分析仪、静态箱 气相色谱法在陇中黄土高原半干旱区对传统耕作不覆盖、免耕不覆盖、免耕秸秆覆盖和传统耕作+秸秆还田4种耕作措施下豆麦双序列轮作农田土壤温室气体(CO2、N2O和CH4)的排放及影响因素进行了连续测定和分析。结果表明: 测定期内4种耕作措施下农田土壤均表现为CO2源、N2O源和CH4净吸收汇; 除传统耕作不覆盖措施, 其他3种耕作措施不同程度地减少了2种轮作序列土壤的N2O排放通量, 并显著增加了土壤对CH4的吸收。CO2和N2O的排放通量分别与地表、地下5 cm处、地下10 cm处的土壤温度呈极显著和显著正相关关系, 相关系数分别为0.92**和0.89**、0.95**和0.91**、0.77*和0.62*; 而CH4吸收通量与不同地层的温度之间无明显的相关关系; CO2和CH4的通量与0~5 cm、5~10 cm的土壤含水量均呈显著正相关关系, 相关系数分别为0.69*和0.72*、0.77*和0.64*, 而与10~30 cm土壤含水量无明显相关关系; N2O排放通量与各层次的土壤含水量之间均呈不显著负相关关系。对2种轮作序列各处理下土壤中排放的3种温室气体的增温潜势计算综合得出: 4种耕作措施中, 免耕不覆盖处理可相对减少土壤温室气体的排放量, 进而降低温室效应。  相似文献   

14.
The importance of constraining the global budget of nitrous oxide (N2O) has been well established. The current global estimate of the contribution of N2O to total anthropogenic greenhouse gas emissions from agriculture is about 69%. Considerable progress has been made over the past few years in developing tools for quantifying the emissions from agricultural sources, at the local and field scale (i.e., chamber and tower-based measurements) as well as at the landscape and regional levels (i.e., aircraft-based measurement and modelling). However, aggregating these emissions over space and time remains a challenge because of the high degree of temporal and spatial variability. Emissions of N2O in temperate climate are largely event driven, e.g., in Eastern Canada, large emissions are observed right after snowmelt. The average emissions during the snowmelt period vary considerably, reflecting the influence of many controlling factors. Cumulative emissions reported here range from 0.05 kg N2O-N ha−1 in Western Canada to 1.26 kg N2O-N ha−1 in Eastern Canada, values that reflect differences in climatic zones and fertilizer management practices. This paper describes the tools for refining the global N2O budget and provides examples of measurements at various scales. Tower-based and aircraft measurement platforms provide good data for quantifying the variability associated with the measurements. Chamber-based methods lack the temporal and spatial resolution required to follow the event driven nature of N2O fluxes but provide valuable information for evaluating management practices. The model DeNitrification and DeComposition is an example of a technique to estimate N2O emissions when no data is available.  相似文献   

15.
Soil sequestration of atmospheric CO2 through land application of organic residues may have beneficial effects as a strategy to offset the increase in the concentration of greenhouse gases (GHG) in the atmosphere. The significance of different variables on GHG production and soil C sink capacity was investigated by monitoring CO2 and N2O fluxes from amended soils under laboratory conditions. In the first experiment, the effects of the chemical composition and complexity of three N-rich organic fertilisers (blood meal, hydrolysed leather, and hoof and horn meal) on the CO2 and N2O productions were studied. A second experiment was aimed at evaluating the effects of the degree of transformation of composts prepared from two-phase olive mill waste on soil C sink capacity. The three N-rich organic fertilisers caused different CO2 and N2O evolution patterns in the amended soils, despite their similar elemental composition. The total amount of added C that was mineralised in the soil ranged from 10.4% to 15.5%, while N2O-N originating from horn and hoof meal was 6 and 13 times higher than that coming from hydrolysed leather and blood meal, respectively. Mineralisation of the C added to the soil was inversely correlated to the degree of stabilisation of the composting mixtures. Soils amended with the initial composting mixture evolved from 2 to 7.3 times more CO2-C than the soil amended with the more stabilised compost. However, the C conservation efficiency of organic residues, calculated by the combined losses during composting, and after land application, was higher for the less transformed organic materials. Both studies showed the key importance of the variables studied on the GHG emissions and C sink efficiency of amended soils under controlled conditions. Laboratory experiments could be a useful tool to assist in the designing of field scale experiments for an effective quantification and monitoring of the overall changes in soil C and N pools.  相似文献   

16.
The objective of this review is to make current knowledge on the nitrogen (N) load throughout the atmosphere (airborne N load) available to readers, with special emphasis on Japanese and Chinese agroecosystems. Key species of airborne N are ammonia, nitrogen dioxide, nitrogen oxide, nitric acid, nitrous acid and particulate ammonium and nitrate. Organic N also exists in the atmosphere. The main processes in terms of the airborne N load involve emission, atmospheric transportation and transformation, atmospheric deposition and environmental impacts. Agricultural activities are the largest emitters of ammonia through emissions mainly from livestock waste and field-applied N fertilizers. The ammonia emissions in China in 1995 from chemical fertilizers and organic fertilizers, such as animal excreta, were estimated to be 3.56 and 2.04 Tg N year−1, respectively, and the emissions in Japan were 0.059 and 0.069 Tg N year−1, respectively. The most fundamental causes of the airborne N load in relation to Japanese and Chinese agriculture were intensive livestock farming in Japan and over use of N fertilizers in China. However, agroecosystems are also a sink for airborne N. Atmospheric N deposition was up to 20 and 60 kg N ha−1 year−1 in Japan and China, respectively. The unrelenting load of airborne N continues in Japan and China. The development of a simple, but accurate method to determine the dry deposition flux that is applicable to simultaneous and multipoint observations would be valuable. The establishment of cross relationships among in situ observations, remote sensing and numerical modeling is also needed to cope with the issue by assessing the actual status, predicting the future status and working out effective measures.  相似文献   

17.
土壤添加沼渣对温室气体排放及小麦生长的影响   总被引:1,自引:1,他引:0  
Digestate, the product obtained after anaerobic digestion of organic waste for biogas production, is rich in plant nutrients and might be used to fertilize crops. Wheat(Triticum spp. L.) was fertilized with digestate, urea, or left unfertilized and cultivated in the greenhouse for 120 d. Emissions of greenhouse gasses(carbon dioxide(CO_2), methane(CH_4), and nitrous oxide(N_2O)) were monitored and plant growth characteristics were determined at harvest. The digestate was characterized for heavy metals, pathogens, and C and N mineralization potential in an aerobic incubation experiment. No Salmonella spp., Shigella spp., or viable eggs of helminths were detected in the digested pig slurry, but the number of faecal coliforms was as high as 3.6 × 10~4colony-forming units(CFU) g-~(1)dry digestate. The concentrations of heavy metals did not surpass the upper limits established by US Environmental Protection Agency(EPA). After 28 d, 17% of the organic C(436 g kg~(-1)dry digestate) and 8% of the organic N(6.92 g kg~(-1)dry digestate)were mineralized. Emissions of CO_2 and CH_4 were not significantly affected by fertilization in the wheat-cultivated soil, but digestate significantly increased the cumulative N_2O emission by 5 times compared to the urea-amended soil and 63 times compared to the uncultivated unfertilized soil. It could be concluded that digestate was nutrient rich and low in heavy metals and pathogens, and did not affect emissions of CH_4 and CO_2 when applied to a soil cultivated with wheat, but increased emission of N_2O.  相似文献   

18.
Computational models are useful to estimate agricultural greenhouse gas emissions at regional scales. However, empirically based parameter values are required for the models to accurately represent carbon (C) and nitrogen (N) mineralization rates of different organic amendments in more and less humid regions or during wet and dry periods of the growing season. A controlled environment study was conducted to assess the rates of C and N mineralization in differently processed sewage sludge (biosolids) in wet and dry soil. Parameter values were estimated for use in modelling the degradation of three types of biosolids. A loam soil with either 49% water-filled pore space (WFPS) or 29% WFPS was amended with mesophilic anaerobically digested (digested), alkaline-stabilized, or composted biosolids. Headspace samples were collected and analysed for carbon dioxide (CO2) and nitrous oxide (N2O), and soil samples for nitrate ( NO 3 ) and ammonium ( NH 4 + ). Four different first-order models were fitted to the cumulative CO2–C and N2O–N data (R2 > 0.98), and soil NO 3 (R2 > 0.65) and NH 4 + (R2 > 0.93) concentrations. CO2–C data indicated that C mineralization was higher in soil with 49% WFPS than in soils with 29% WFPS. Seventy-nine percent of the C compounds in digested biosolids degraded in soil with 49% WFPS, compared with 52% for alkaline-stabilized biosolids and 8% for composted biosolids. The fitted coefficient values were similar for all of the four first-order models used in this study and provide useful information for parameterizing more sophisticated mechanistic models of the degradation of biosolids in soil.  相似文献   

19.
团头鲂池塘养殖生态系统晒塘阶段温室气体排放通量分析   总被引:5,自引:0,他引:5  
为探讨团头鲂池塘养殖生态系统晒塘阶段温室气体的排放规律及综合增温潜势,采用静态暗箱——气相色谱法对团头鲂池塘养殖生态系统晒塘阶段温室气体(CO2,CH4,N2O)的排放进行原位测定。结果显示,团头鲂池塘养殖生态系统晒塘阶段均表现为CO2,CH4和N2O的排放源,其中CO2排放通量达(86.72±12.46)g/m2,CH4排放量达(2.01±0.34)g/m2,N2O排放量达(7.44±0.98)mg/m2;在100 a的时间尺度上,团头鲂池塘养殖生态系统在晒塘阶段综合增温潜势为(157.28±24.31)g/m2,团头鲂池塘养殖生态系统温室气体减排空间较大。  相似文献   

20.
Nitrogen-use efficiency in arable agriculture after organic fertilization can be improved by the incorporation of digestate into soil and through the use of nitrification inhibitors. To test the efficiency and the interaction of these measures, a laboratory microcosm study was conducted with undisturbed samples from two arable soils – a Gleysol and a Plaggic Anthrosol. Treatments were digestate application by injection to 15 or 20 cm depths or by trailing hose with subsequent incorporation. Half of the replicates of each application treatment were treated with the nitrification inhibitor 3,4-dimethyl pyrazole phosphate (DMPP). Emissions of the greenhouse gases (GHGs) CO2, N2O and CH4 were monitored during 51 days of incubation. Deeper injection (20 cm) did not lead to different GHG emissions compared with a shallow injection (15 cm). Application of DMPP decreased cumulative N2O emissions significantly by 17–70%. DMPP inhibited N2O fluxes and NO3- production, suggesting a positive effect of DMPP on the mitigation of direct GHG emission and nitrate leaching at least during several weeks after digestate fertilization. The effect of DMPP is independent of the application technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号