首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
The use of entomopathogenic nematodes is one potential non-chemical approach to control the larvae of the invasive western corn rootworm (Diabrotica virgifera virgifera LeConte, Coleoptera: Chrysomelidae) in Europe. This study investigated the efficacy of Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae), Heterorhabditis megidis Poinar, Jackson and Klein (Rh., Heterorhabditidae) and Steinernema feltiae Filipjev (Rh., Steinernematidae) in reducing D. v. virgifera as a function of soil characteristics. A field experiment was repeated four times in southern Hungary using artificially infested maize plants potted into three different soils. Sleeve gauze cages were used to assess the number of emerging adult D. v. virgifera from the treatments and untreated controls. Results indicate that nematodes have the potential to reduce D. v. virgifera larvae in most soils; however, their efficacy can be higher in maize fields with heavy clay or silty clay soils than in sandy soils, which is in contrast to the common assumption that nematodes perform better in sandy soils than in heavy soils.  相似文献   

2.
Modelling population dynamics of the maize pest Diabrotica virgifera virgifera LeConte (western corn rootworm; Coleoptera: Chrysomelidae) requires knowledge on the growth rate (=net reproductive rate) of the species. We investigated the generational (=annual) growth rate of D. v. virgifera in isolated maize fields in southern Hungary and eastern Croatia over several years. The population densities of D. v. virgifera were assessed by absolute counts of emerging adults in 90 gauze cages per study field. Emergence ranged from 1.3 to 30.7 adults per m2 in continuous maize field sections, and from 0.3 to 5.1 adults per m2 in adjacent first-year maize sections. The annual growth rates of D. v. virgifera ranged from 0.5 to 13, and averaged in close to 4. These experimentally assessed growth rates could complement growth estimates in population dynamic models, particularly those for forecasting the population growth to economic thresholds or for estimating population build-ups after new introductions of this alien species in Europe. As an example, the determined growth rate was used to estimate that the first documented successful introduction of this species into Europe occurred between 1979 and 1984, which is 8–13 years before the detection of this species and its larval damage in maize fields near Belgrade, Serbia, in 1992.  相似文献   

3.
Predicting western corn rootworm (Diabrotica virgifera virgifera LeConte; WCR) development in the field depends on models that use experimentally determined degree-days (°D). For constant temperature regimes, this temperature sum can be reliably used to predict hatch and development of WCR larvae. In the first experiment in climate cabinets, we evaluated the effects of varying day–night (4 and 6 °C difference) temperature regimes compared to equivalent constant temperature regimes on hatch, development, and recovery of WCR larvae from a non-diapausing population. Relative to constant diurnal temperatures, varying day–night temperatures resulted in earlier larval hatch and accelerated larval development (especially when day–night temperatures differed by 6 °C) due to direct temperature effects (i.e., the Kaufmann-effect) and to enhanced plant growth. For WCR eggs, the temperature sums needed for hatch in the field are overestimated when they are determined by models based on constant experimental temperatures. Recovery of larvae from soil was not affected by temperature, but was positively associated with plant height. In a second experiment we evaluated whether the found effect of varying temperature ranges on the acceleration of larval hatch is also influenced by the level of these varying temperatures. Initial hatch started earlier by varying diurnal temperatures only under a low-temperature regime (14 ± 4 °C). For herbivorous insects like WCR, plant growth effects induced by varying temperature regimes may result in increased variation in temperature-based developmental parameters. Consideration of these effects will improve models that predict WCR hatching patterns and will improve the development and timing of control strategies.  相似文献   

4.
The larvae of the invasive maize pest Diabrotica virgifera virgifera (Coleoptera; Chrysomelidae, western corn rootworm) hatch in the soil in spring and search for maize roots following CO2 gradients. CO2 is one cue that might be used as an attractant towards soil insecticides, a mechanism already shown in laboratory experiments. This study compared the efficacy of several combinations of in or between-row applications of different rates of CO2-emitting capsules and/or soil insecticides (here tefluthrin) aimed at preventing root damage by the pest larvae under field conditions. CO2 emission of the capsules in the soil lasted up to 28 days with a peak after 21 days coinciding with the first larval hatch. The pest density in the soil was not high enough to cause root damage above the economic threshold. Furthermore all tefluthrin applications, regardless of whether at full, half or quarter rates effectively prevented root damage; thus CO2 did not significantly further increase this efficacy. In-row applications of tefluthrin with or without CO2-emitting capsules prevented root damage to a much larger extent (59–77 % on the node injury scale) than the between-row applications of tefluthrin with or without capsules (17–31 %). In conclusion, further research on belowground orientation and movement of D. v. virgifera larvae, as well as tests with combinations of CO2-emitting capsules and lower rates of soil insecticide are needed to potentially develop attract and kill strategies as a management option against this maize pest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号