首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
2.
Summary Based on 15-year-old black spruce (Picea mariana) trees from 40 half-sib families sampled from 9 blocks of a family test in New Brunswick, this study examined intertree and intratree variation in various wood density and ring width characteristics. Of various variance components of the intertree variation, a remarkable variance component due to family was found in wood density characteristics (viz. average wood density, average earlywood density and latewood density of the tree), and these characteristics are thus under strong genetic control (h i 2 ranging from 0.60 to 0.86, and h f 2 from 0.56 to 0.68). It, to a lesser extent, applies to ring width characteristics at the tree level (viz. average ring width, and average earlywood width, latewood width and latewood percent of the tree) that show a lower heritability (h? from 0.18 to 0.28, and h f 2 from 0.22 to 0.36). Both block and block × family interaction contribute little to the total intertree variation encountered in 40 families from 9 blocks, while tree-to-tree variation within the family accounts for most (over 3/4) of the total intertree variation.Compared to the intertree variation (tree-to-tree variation within the family), the intratree variation in various wood characteristics studied is considerably larger in this species. It appears that most intraring wood density characteristics show a relatively smaller intertree variation but a relatively larger intratree variation as compared to ring width characteristics (except latewood width and latewood percent). Latewood width and latewood percent show the smallest intertree variation and the largest intratree variation. Between the two sources of the radial intratree variation, cambial age explains much more variation in most intraring wood density characteristics, while ring width accounts for more variation in earlywood width, latewood width and intraring density variation. This indicates that wood density of growth rings in this species is dependent more on cambial age than ring width (growth rate). Among various wood density and ring width characteristics studies, maximum (latewood) density shows the strongest response to calendar year. This characteristics is thus a useful dendroclimatic parameter in this species.I would like to thank Dr. E.K. Morgenstern and Mr. D. Simpson for their involvement in the planning of this study. Thanks are also due to G. Chauret, T. Keenam, R. Ploure, V. Steel and C. Reitlingshoefer for their technical assistance  相似文献   

3.
Summary The variation, correlations and inheritance of various intraring wood characteristics in 15-year-old black spruce (Picea mariana) trees from 40 half-sib families grown in New Brunswick were examined. The emphasis was placed on the effect of age on these genetic parameters. With increasing (cambial) age, ring width and ring density tend to exhibit a constant tree-to-tree variation whereas most other characteristics exhibit a smaller tree-to-tree variation. The heritability for latewood characteristics does not seem to change appreciably. Other characteristics (except RDmi), however, tend to be less heritable when the tree grows older. Correlations between ring density and most intraring characteristics tend to be weaker with increasing age. This implies that fast-growth in this species will have less negative effect on wood density when the tree grows older.The author wishes to thank Dr. E.K. Morgenstern of the Genetic Resource Consultants, Permbroke, Ontario and Mr. D. Simpson of the Canadian Forest Service in Fredericton, New Brunswick for their involvement in the initial planning of this project. Thanks are also due to G. Chauret, T. Keenam, R. Ploure, V. Steel and C. Reitlingshoefer for their technical assistance.  相似文献   

4.
5.
6.
Wood ash is recommended as a compensatory fertiliser to counteract the effects of acidic deposition on forest ecosystems. Spatial distribution of biomass, necromass and morphology parameters of the fine roots (diameter classes <1, 1–2, <2 mm) of Norway spruce (Picea abies (L.) Karst.) were analysed in response to fertilisation with granulated wood ash (GWA) in a long-term field experiment in SW Sweden. GWA was applied as a single dose of 3200 kg ha−1 and the fine roots were sampled 9 years later by soil coring. Soil cores were divided into 1-cm strata within the top 0–2.5 cm humus limits, the lower humus below 2.5 cm (with varying thickness) and the mineral soil to 50 cm depth (from ground surface). Total fine-root biomass in the control (C) and GWA treatment, 256 ± 20 and 258 ± 25 g m−2, respectively, and length 2072 ± 182 and 1800 ± 198 m m−2, respectively, did not differ statistically from each other. Total fine-root necromass in the 1–2 mm fraction was significantly higher in C than in the GWA treatment, 130 ± 12 and 80 ± 10 g m−2, respectively. Fine-root biomass in the <1 mm fraction was significantly greater in the lower humus in the GWA treatment, but this did not affect the total biomass in the <1 mm fraction in the whole soil profile. The biomass-to-necromass ratio (1–2 mm) was significantly higher in the GWA treatment in the 0–30 cm soil layer than in the corresponding layer of the control. Specific root length (SRL) was lower in the GWA treatment than in the control in the 0–5 cm soil layer. The lower necromass and SRL were more clearly related to the GWA treatment, whereas the difference in the vertical distribution of biomass may have been related to the thicker humus layer in the GWA plots.  相似文献   

7.

• Introduction   

Commercial thinning (CT) could contribute to increase short-term tree growth and be beneficial in a cold climate, as in boreal regions. Thus, growth rate, ring density and flexural modulus of elasticity (MOE) of trees may change after CT. Moreover, mechanical wood properties vary with position in the tree, and there is a need to develop optimal log allocation strategies in order to allocate logs to their best use.  相似文献   

8.
Wood from Norway spruce (Picea abies L. Karst.) is biologicallydegraded in exposed conditions. It also has anatomical featuresthat make it difficult to impregnate with preservatives by currentlyavailable industrial processes. In the study reported here,we used the new Linotech process to impregnate Norway sprucewood with hydrophobic linseed oil and then quantified its uptakeand dispersal in anatomically distinct wood tissues. We alsoinvestigated the effects of the wood moisture content on theresults of the impregnation. Samples (500 x 25 x 25 mm) weretaken from 15 trees in a coniferous forest in northern Sweden(64° 10' N, 160–320 m a.s.l.). The parameters forthe Linotech process were 2–3 h treatment time at 0.8–1.4MPa and 60–140°C. To determine the level of uptake,the linseed oil was extracted from the impregnated wood usingmethyl-tertiary-butyl-ether. The uptake was quantitatively analysedby comparing X-ray microdensitometry values obtained followingimpregnation both before and after oil removal. In earlywood,initial moisture content had an obvious effect on the impregnationresult. Six times more oil was taken up when the moisture contentwas greater than ~150 per cent than when it was less than 30per cent. Theoretical calculations, based on density levels,suggest that the water-filled porosity of the wood (water volumedivided by porosity volume) was positively correlated with thelinseed oil uptake, and more strongly correlated in earlywoodthan in latewood. There were also significant differences inuptake between different wood tissues; heartwood/mature woodand heartwood/juvenile wood showed 10–20 per cent weightincreases due to linseed oil uptake, compared with 30–50per cent in sapwood/mature wood. Examination by scanning electronmicroscopy confirmed these uptake patterns. The moisture contentafter impregnation was about 5 per cent, irrespective of theLinotech process parameters, tissue type and initial moisturecontent. In conclusion, the impregnation process used here resultsin high levels of well-dispersed linseed oil uptake and shouldfacilitate drying.  相似文献   

9.
Stem deformation has often been observed in young black spruce (Picea mariana (Mill.) B.S.P.) and jack pine (Pinus banksiana Lamb.) plantations. Whenever important stem deformations are observed at the time of harvesting, timber value is negatively affected especially during the wood transformation process. The present work was undertaken to quantify and qualify the importance of stem deformation of black spruce and jack pine in the boreal forest of central Quebec at the stand and tree levels. In 30 black spruce and jack pine plantations, approximately 22% of spruce trees and 27% of pine trees exhibited stem deformation. The proportion of deformed trees was higher in the youngest plantations and decreased with the age of the plantations. Stem deformation caused the formation of compression wood which is another factor that can reduce the value of wood products. Thirty-nine black spruces and 34 jack pines were analysed at the tree level. On average, compression wood represented 14% and 20% of stem volume in 7- and 10-year old black spruce plantations, respectively. These proportions ranged from 18% in the youngest jack pine plantation to 26% in the oldest one. Stems of both species classified as normal contained a lower volume of compression wood than stems classified as deformed or very deformed. Annual percentages of compression wood and annual shoot length increased significantly with tree age (p < 0.0001 for both variables). Statistically significant correlations were also found between the range of displacement of the stem and the percentage of compression wood. The fewer number of trees with deformed stems in older plantations combined with high compression wood formation suggests that, over time, a deformed tree can become normal and straight in appearance.  相似文献   

10.
During the period 1976–1991, a combined experiment of acidification, liming and nitrogen addition in a mature spruce stand was conducted at Farabol in south-east Sweden. The aim of this study was to investigate the effects of these treatments on the ground vegetation 0, 1, 5 and 15 years after experimental establishment. The treatment regimes were nitrogen (200 kg N ha−1, repeated three times at 4–5-year intervals, totally 600 kg N ha−1), sulphur powder (50 and 100 kg S ha−1 a−1, totally 600 and 1200 kg ha−1), sulphur plus nitrogen (600+600 kg ha−1) and limestone (500 kg ha−1 a−1, i.e. totally 6000 kg ha−1). The results showed that nitrogen addition and liming promoted the abundance of the grass Deschampsia flexuosa, while acidification had a negative effect on D. flexuosa and herbs in the field layer. There was a negative reaction giving immediate damage to the bryophytes in connection with additions of nitrogen, sulphur powder and lime. The magnitude of damage and the capacity to recover varied among species as well as among treatments. The recovery from immediate damage after liming was much faster than after the treatments with sulphur powder and/or nitrogen. A negative interaction between sulphur powder and nitrogen was found for herbs and mosses where the combined effects were stronger than the effects of a single treatment alone. Acidification also had a negative effect on the total number of species. The results of this study showed that acidification and nitrogen deposition could negatively influence forest vegetation by changing the nutrient availability in the soils. Liming led to an improved growth of the forest ground vegetation and the flora changed towards a more nitrophilic species composition.  相似文献   

11.

? Context

The transition of microfibril angle (MFA) values from juvenile to mature wood marks the change from variable, low-quality wood to stronger and more consistent wood that can produce higher value products.

? Aims

We evaluate the utility of different statistical models that predict how much of a log is higher quality mature wood based on MFA.

? Methods

MFA was measured from pith to bark at breast height in six lodgepole pine stands in western Canada. Six different forms of two-segment regression models were assessed to determine the point of transition (TP) in MFA from juvenile to mature wood.

? Results

All six models provided useful and significant TP estimates. In the first segment (juvenile phase), the quadratic form produced the most conservative TPs, the linear form the least conservative, and the exponential form was intermediate. A linear second segment (mature phase) was only a minor improvement over a constant. There were significant differences in MFA TP among some sites. Analyses of the relationships between TP and tree variables, e.g., DBH, height, were inconclusive.

? Conclusions

Any of the six two-segment models can be used objectively to estimate MFA transition points; the choice of model will allow mill managers to manage risk in product out-turn.  相似文献   

12.
A stand-based model for predicting basal-area mean diameter growth for Norway spruce (Picea abies (L.) Karst.) in young mixed stands of spruce and birch (Betula pendula Roth, B. pubescens Ehrh.) was developed and compared with two existing growth models developed for older stands. The main data were from experiments with four different pre-commercial thinning regimes. A multiplicative model with four independent variables was found suitable. The independent variables were total number of trees per hectare of all the species, site index, dominant height of spruce, and a measure of competition between birch and spruce, i.e. dominant height of spruce divided by the dominant height of birch multiplied by the proportion of spruce of total number of trees. The R2 value was 0.59 and the coefficient of variation was 12%. A test with an independent data set from the National Forest Inventory (NFI) indicated that the function developed in this study is suitable for young stands at medium to highly productive areas. Large deviations between observed and predicted growth for the two existing functions were revealed in highly productive stands. The tests based on data from the NFI also indicated that the existing function developed for spruce in older mixed stands is suitable for practical purposes for young stands.  相似文献   

13.

Key message

Pilodyn and acoustic velocity measurements on standing trees, used for predicting density and stiffness, can be good genetic selection tools for black spruce. Genetic parameters and selection efficiency were conserved in two breeding zones with contrasted bioclimatic conditions.

Context

Given the recent progress made in the black spruce genetic improvement program, the integration of juvenile wood mechanical properties as selection criteria is increasingly relevant.

Aims

This study aims to estimate the genetic parameters of in situ wood density and modulus of elasticity (MoE) measurements and to verify the efficiency of various measuring methods used for large-scale selection of black spruce based on wood quality.

Methods

Height, diameter, wood density, and some indirect measures of density (penetration and drilling resistance) and MoE (acoustical velocity and Pilodyn) were estimated on 2400 24-year-old trees of 120 open-pollinated families in progeny trials located in the continuous boreal or mixed forest subzones.

Results

Heritability of growth, density, and indirect density measurements varied from low to moderate and was moderate for acoustical velocity in both vegetation subzones. Expected genetic gains for wood properties based on in situ methods were higher for MoE proxy estimation combining Pilodyn and acoustic velocity.

Conclusion

Acoustic velocity is a good predictor of MoE. It is virtually unaffected by the environment and can be used on a large scale in the same manner as the Pilodyn for density. Using a proxy estimation that combines both methods helps optimize genetic gain for MoE.
  相似文献   

14.
Timber storage is a key aspect of storm damage management. After huge storms, sprinkling storage is usually the most used conservation process but anaerobic storage in sealed silos appears as good alternative to preserve wood quality over long periods. This paper investigates the impact of long-term (57 months) storage of Norway spruce logs in anaerobic atmosphere on wood properties. Tests were performed on clear wood specimens and on lumbers to determine the modulus of elasticity (E), the static bending strength (σf) and the dynamic bending strength (K). Storage effects on impregnability and colour variation were also studied. Results show no effect of storage on E, σf and K. The naturally poor impregnability of Norway spruce is not improved by the anaerobic conditions, compared to traditional wet storage. Triangle tests reveal no discernible colour variation between logs that underwent anaerobic storage and the control sample. As a conclusion, despite a mould (Gliocladium solani) frequently observed on logs surface after the storage, the process offers ideal conservation conditions. While overall cost remains the main drawback for using anaerobic storage at large scale, the process can be recommended for high value logs, especially since it has few environmental impacts.  相似文献   

15.
Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R2 = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area of individual trees. The resulting model was in line with many other findings on the leaf area and leaf mass relationships with crown size. From the additional influence of dominant height and dbh in the leaf area model we conclude that the used crown model could be improved by estimating the position of the maximum crown width and the crown width at the base of the crown depending on these two variables.  相似文献   

16.
Responses of Norway spruce populations to climatic transfer, in terms of growth and survival, were analyzed on the basis of a provenance experiment derived from the international provenance test IUFRO 1964/1968. The experiment comprises a series of five trial plots situated at contrasting elevations ranging from 484 to 1,275 m a.s.l., with 11 provenances represented at all trial plots that were used for the analysis. Transfer rates were defined as differences in altitudes or climatic variables between the site of plantation and the site of origin. Optimal transfer rates and optimal climates for individual provenances were derived from quadratic response functions. Spruce provenances generally responded positively by height and volume growth to transfer into lower altitudes, i.e., warmer conditions with less precipitations. The analysis at the level of provenances showed that optimal transfer rates were consistently negatively correlated with the underlying environmental variables and optimal climates were consequently nearly the same for all provenances irrespective of the response traits and ecodistance variables. Stability indices based on joint regression analysis indicate that provenances from higher altitudes, colder and wetter climates tend to be more stable, whereas provenances from lower altitudes, drier and warmer sites are more responsive to site quality. However, the differences in the stability are small and stability indices were generally close to 1. The results indicate that populations in different climates remain adapted to a common optimum and the extent of local adaptation is quite limited. Possible explanations of this observation are briefly discussed.  相似文献   

17.
18.
Picea crassifolia and P.wilsonii,commonly used for afforestation in northern China,are increasingly likely to be subjected to high temperatures and soil drought stress as a result of global warming.However,little is known about the effects of these stresses on foliar photosynthesis in the two species.To investigate how photosynthetic characteristics and sensitivity respond to prolonged high temperatures and soil drought,foliar gas exchange and other closely related parameters were recorded from four-year-old seedlings of both species.Seedlings were grown under two temperature treatments(25/15 and 35/25 °C) and four soil water regimes [80,60,40 and 20% of maximum field capacity(FC)] for 4 months.Although all treatments significantly reduced photosynthetic rates(P_n) of both species,P.crassifolia exhibited greater photosynthetic acclimation than P.wilsonii.Differences in photosynthetic acclimation were mainly related to variations in stomatal conductance(Cond) and the maximum quantum yield of PSII(F_v/F_m) between treatments.Indeed,higher Cond and F_v/F_m in all treatments were shown for P.crassifolia than for P.wilsonii.Moreover,photosynthesis in P.crassifolia exhibited inherently lower temperature sensitivities(broader span for the temperature response curves; lower b) and higher thermostability(invariable b between treatments).Further,severe drought stress(20% FC) limited the survival of P.wilsonii.Our results indicate that P.wilsonii is more susceptible to high temperatures and soil drought stress.Planting P.crassifolia would be more expected to survive these conditions and hence be of greater benefit to forest stability if predicted increases in drought and temperature in northern China occur.  相似文献   

19.
Picea crassifolia and P. wilsonii, commonly used for afforestation in northern China, are increasingly likely to be subjected to high temperatures and soil drought stress as a result of global warming. However, little is known about the effects of these stresses on foliar photosynthesis in the two species. To investigate how photosynthetic characteristics and sensitivity respond to prolonged high temperatures and soil drought, foliar gas exchange and other closely related parameters were recorded from four-year-old seedlings of both species. Seedlings were grown under two temperature treatments (25/15 and 35/25 °C) and four soil water regimes [80, 60, 40 and 20% of maximum field capacity (FC)] for 4 months. Although all treatments significantly reduced photosynthetic rates (P n) of both species, P. crassifolia exhibited greater photosynthetic acclimation than P. wilsonii. Differences in photosynthetic acclimation were mainly related to variations in stomatal conductance (Cond) and the maximum quantum yield of PSII (F v/F m) between treatments. Indeed, higher Cond and F v/F m in all treatments were shown for P. crassifolia than for P. wilsonii. Moreover, photosynthesis in P. crassifolia exhibited inherently lower temperature sensitivities (broader span for the temperature response curves; lower b) and higher thermostability (invariable b between treatments). Further, severe drought stress (20% FC) limited the survival of P. wilsonii. Our results indicate that P. wilsonii is more susceptible to high temperatures and soil drought stress. Planting P. crassifolia would be more expected to survive these conditions and hence be of greater benefit to forest stability if predicted increases in drought and temperature in northern China occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号