共查询到19条相似文献,搜索用时 109 毫秒
1.
2006~2007年在河南洛阳进行了冬小麦播种方式的对比试验,结果表明,沟播条件下冬小麦产量较高,为3481.5kg/hm2,增产率为10.1%,较平播增产极显著;结实率为83.7%,较平播高24.6个百分点,成产结构较为合理。不同处理地上部和地下部干物质积累总趋势相同,均呈"S"型曲线;地上部在灌浆期达到峰值,地下部干物质积累在抽穗期达到峰值;从整个生育期看,沟播处理干物质积累总量较平播多。各处理的叶面积曲线均呈单峰曲线,至抽穗期达到峰值,且沟播处理的峰值大于平播。 相似文献
2.
覆盖栽培方式对旱地冬小麦越冬期间土壤温度的影响 总被引:1,自引:0,他引:1
为筛选出旱地冬小麦适宜覆盖栽培方式,通过微型温度记录仪连续观测越冬期间冬小麦田10和20 cm深度土壤温度的变化,比较旱地秸秆覆盖(SM)、地膜覆盖(FM)、垄沟模式(CM)和无覆盖模式(CK)的麦田土壤温度效应。结果表明,整个越冬期间所有覆盖处理的土壤日均温显著升高,总体增幅表现为CM>FM>SM。越冬后期(2月1日-2月20日)土壤温度变化与总体趋势差异明显,FM的增温幅度大于CM;与CK相比,SM的土壤日均温显著降低,具体表现在温度昼夜变化上,其中10 cm土层温度除在8:00-11:00升高外,其他时间降低,20 cm土层温度均下降(10∶00-14∶00差异不显著)。越冬前期,覆盖栽培10 cm土层的增温值均高于20 cm土层,越冬中期以后则相反(越冬后期土层间增温值差异显著)。SM的土壤日最高温度相对于CK没有变化或者显著降低,而日最低温度则提高,因此降低了土壤温度日较差;CM的土壤日最高温度在越冬后期降低,而在越冬中前期升高,而且土壤日最低温度也升高且增幅更大,因此土壤温度变幅显著降低;FM同时提高了土壤日最高温度和最低温度,最终没有显著改变土壤温度变幅。 相似文献
3.
播期对秸秆带状覆盖下冬小麦干物质积累、产量及水分利用效率的影响 总被引:1,自引:0,他引:1
为明确半干旱雨养区玉米秸秆带状覆盖条件下播种时间对小麦产量和水分利用效率可能带来的影响,在甘肃省通渭县常河镇甘肃农业大学旱作小麦试验基地设7个播期处理,分别为9月14日(T1)、9月19日(T2)、9月24日(T3)、9月29日(T4)、10月4日(T5)、10月9日(T6),以9月24日露地种植为对照(CK),研究了播期对冬小麦生育期、干物质积累及产量等性状的影响。结果表明,T2处理的产量和WUE最高,穗粒数和千粒重也显著高于其他处理。推迟播期缩短了冬小麦全生育其天数,各生育阶段天数抽穗前大于抽穗后;播期对植株干物质积累的影响表现为营养生长期大于生殖生长期,花前干物质向籽粒的转运量及其对籽粒的贡献率随播期推迟呈增加的趋势。综合来看,在半干旱雨养区玉米秸秆带状覆盖条件下9月19日是冬小麦最佳播期。 相似文献
4.
氮肥调控对冬小麦干物质量、产量和氮素利用效率的影响 总被引:13,自引:0,他引:13
为了探讨河南省安阳地区冬小麦合理高效的氮肥调控模式,2008-2010年通过田间试验,比较分析了不同基追比(10∶0和6∶4)和施氮水平(100、200和300kg·hm-2)下冬小麦干物质量、产量和氮肥利用效率的差异。结果表明,增施氮肥显著促进了冬小麦的干物质积累和籽粒产量的形成,在基追比10∶0下,氮肥农学效率(NE)随着施氮量的增加呈降低趋势。在相同追施比例下,干物质量、籽粒产量、氮素生理利用效率(PNUE)和氮素利用效率(NUE)以施氮200kg·hm-2时最高。在施氮100kg·hm-2时,提高氮肥基施比例更有利于增加干物质量、产量和氮肥利用效率;伴随施氮量的增加,提高追肥比例能有效增加干物质量、籽粒产量、NE、PNUE和NUE。本试验中,在施氮200kg·hm-2、基追比为6∶4条件下,冬小麦的干物质积累、产量及氮素利用效率表现最佳。 相似文献
5.
种植密度对匀播冬小麦干物质积累、转运及产量的影响 总被引:1,自引:0,他引:1
为探究匀播冬小麦对种植密度的响应,以不同穗型品种新冬22(A_1)和新冬50(A_2)为材料,匀播(株行距相等)条件下设置了123万、156万、204万、278万、400万株·hm~(-2)(分别记为M_1、M_2、M_3、M_4、M_5)5个种植密度,研究了不同种植密度下匀播小麦干物质积累、运转、产量及其构成因素的差异。结果表明,匀播条件下,冬小麦抽穗前干物质积累量随种植密度的增加而增加,抽穗后干物质积累量随种植密度增加先增加后降低;新冬22号花后干物质积累量、花后干物质对籽粒产量贡献率、籽粒产量均表现为M_2处理最高,新冬50号花后干物质积累量、花后干物质对籽粒产量贡献率、籽粒产量均表现为M_4处理最高。随着种植密度的增加,两个品种的有效穗数呈增加趋势,穗粒数、千粒重呈下降趋势,籽粒产量呈先升后降趋势。匀播条件下,多穗型品种新冬22号适宜种植密度为156万株·hm~(-2),大穗型品种新冬50号适宜种植密度为278万株·hm~(-2)。 相似文献
6.
不同水肥条件下冬小麦的干物质积累、产量及水氮利用效率 总被引:23,自引:4,他引:23
为了给冬小麦种植中合理水肥管理提供依据,以京冬8号为试验材料,研究了不同水肥管理模式对冬小麦干物质积累、产量及水氮利用效率的影响。结果表明,与传统水肥相比,优化水肥、秸秆还田优化水肥的冬小麦全生育期干物质积累总量和经济系数均有所提高,物质生产结构较优;单位面积收获穗数有所增加,穗粒数显著减少,千粒重显著提高,籽粒产量有所增加;水分利用效率无显著性差异,氮肥当季利用率显著提高。与优化水肥相比,秸秆还田优化水肥有利于增加单位面积籽粒产量,是种植冬小麦的最佳模式。 相似文献
7.
为确定北疆小麦适宜的播种模式,以北疆主栽冬小麦品种新冬18号和新冬41号及春小麦品种新春44号和新春48号为材料,设置晚播冬小麦(10月8日播种,用B1表示)、极晚播冬小麦和冬播春小麦(10月28日播种,用B2表示)以及春播春小麦(4月4日播种,用B3表示)三种播种模式,比较分析了播种模式间小麦的生育进程、总茎数、叶面积指数、光合势、干物质积累量、经济系数、产量及水分利用效率的差异。结果表明,B2处理的冬小麦较B1处理晚熟约7 d,生育期缩短162 d,出苗率、最高总茎数、LAI、总光合势、干物质积累量及总耗水量分别降低27.6个百分点、17.1%、11.5%、9.6%、3.7%和15.9%,而水分利用效率提高15.7%,平均经济系数和产量与B1处理无显著差异;B2处理的春小麦较B3处理早熟7 d,生育期延长约4 d,出苗率、最高总茎数、LAI和总耗水量分别降低28.1个百分点、7.6%、5.2%和12.3%,总... 相似文献
8.
为了进一步明确地膜小麦的增产机理,从1998~2000年在两个生长季节里对地膜穴播、膜侧沟播、露地条播方式下冬小麦主要农艺性状、籽粒干物质积累过程进行了比较研究。试验结果表明,地膜穴播和膜测沟播可使单株分蘖数、穗粒数、穗粒重、单位面积产量增加,但分蘖成穗率和根/茎比降低,基部节间延长,抗例伏性降低;植株最上部叶片中可溶性糖和籽粒中糖分含量增加,籽粒中蛋白质含量降低。籽粒干重的增加,主要表现在渐增期和快增期灌装速率较高,而缓增期无差异;膜侧沟播的个体性状较好,地膜穴播的群体性状较好。地膜穴播比膜侧沟播的产量高。 相似文献
9.
立体匀播和密度对冬小麦光合、干物质积累分配及产量的影响 总被引:1,自引:0,他引:1
为给小麦立体匀播栽培推广提供理论依据,选用小麦品种新冬22号和新冬46号为供试材料,采用裂区设计,主区种植方式设立体匀播和常规条播2个处理,副区种植密度设150万株·hm~(-2)(D_(150))、225万株·hm~(-2)(D_(225))、300万株·hm~(-2)(D_(300))和375万株·hm~(-2)(D_(375))4个处理,研究了种植方式和密度对冬小麦光合、干物质积累与分配、产量及其构成因素的影响。结果表明,与常规条播比较,立体匀播方式下小麦群体生育后期中、下部叶的LAI、SPAD值和净光合速率显著提高;植株重、干物质转运量、干物质转运效率和干物质转运对籽粒产量贡献率增大,而植株成熟期营养器官干物质分配率降低;随着种植密度增大,茎鞘干物质分配率上升,叶片干物质分配率减小,而颖壳及穗轴、籽粒干物质分配率则无显著变化。与常规条播相比,立体匀播方式下新冬22号和新冬46号主茎穗粒重平均降低7.95%和4.43%,而分蘖穗粒重平均提高11.54%和5.06%,穗数显著提高(17.31%和17.68%),产量提高6.40%和9.84%,以D_(225)处理产量最高;穗粒数分别降低2.23%和1.71%,千粒重分别降低4.38%和4.54%。由此可知,立体匀播方式提高了小麦群体生育后期中、下部叶片叶面积指数和净光合速率,增大了植株干物质积累量,促进了营养器官干物质向分蘖穗籽粒中转运,并主要通过增加群体穗数和分蘖穗穗粒重提高产量;最佳的种植密度为225万株·hm~(-2)。 相似文献
10.
播后镇压和冬前灌溉对冬小麦干物质转移和氮素利用效率的影响 总被引:4,自引:0,他引:4
为明确播后镇压和冬前灌溉对高产冬小麦干物质和氮素转移及氮素利用效率的影响,以冬小麦品种石新828和石麦12为材料,采用裂区田间试验,于开花期和成熟期,测定不同器官的干物质和氮积累量和转移量、籽粒产量、蛋白质产量、氮吸收效率和氮肥生产效率。结果表明,冬灌和镇压处理下,2个品种开花期和成熟期的干物质积累量下降,开花前各营养器官干物质的转移量、转移率及对籽粒的贡献率均降低,但开花后籽粒中的干物质积累量增加。冬灌处理小麦成熟期的总干物质积累量和产量下降。冬灌处理下,石新828开花后籽粒中的氮积累量增加,开花后氮素对籽粒的贡献率提高,但各器官的氮转移量显著降低,籽粒氮积累总量显著减少,氮吸收效率下降;冬灌对石麦12成熟期籽粒氮素积累量影响不显著。与不镇压相比,镇压处理下,2个品种开花期的氮积累总量和不同器官中的氮积累量均降低,而成熟期各器官氮积累量及分配比例的差异均不显著。镇压处理与不镇压处理相比,2个品种开花前营养器官中的氮转移量、转移率和贡献率均降低,但是开花后的氮积累量及其对籽粒氮的贡献率提高,其中,镇压的石麦12开花前氮转移量、贡献率和开花后氮积累量、贡献率与不镇压的差异达显著水平;成熟期籽粒氮素积累量的差异不显著。建议在足墒播种条件下不必进行冬灌,应根据播种前后土壤和水分条件确定是否需要镇压。 相似文献
11.
A pot and a field experiment were conducted to assess the effects of root/shoot ratio (R/S) on the water use efficiency (WUE) and grain yield of winter wheat. The R/S was regulated by pruning the roots during the stem elongation stage, resulting in reduced root systems of the plants. At the heading stage, the root dry weight of root-pruned plants was less than that of intact-root plants, but their R/S was similar to that of intact-root plants under both experimental conditions. After tiller pruning, the R/S of root-pruned plants was significantly lower than that of intact-root plants (p < 0.05). Root pruning reduced the rate of leaf transpiration and lowered the number of tillers per plant (p < 0.05) during the vegetative stage. As a result, root-pruned wheat showed reduced water use when compared to intact-root plants before heading (p < 0.05). At anthesis, there was no significant difference in transpiration between plants with intact roots and those with pruned roots in the pots. However, under field conditions, transpiration of root-pruned plants was significantly higher than that of intact-root plants at anthesis. Additionally, at anthesis root-pruned plants had a higher rate of leaf photosynthesis and lower rate of root respiration, which resulted in a significantly higher grain yield at maturity when compared to plants with intact roots. Under both experimental conditions, there were no significant differences in shoot dry weight per plant between root-pruned and intact-root plants grown in monoculture. When root-pruned plants were grown with intact-root plants, the root-pruned wheat was less productive and had a lower relative shoot dry weight (0.78 and 0.86, respectively) than the intact-root plants (1.24 and 1.16, respectively). These results suggest that plants with pruned roots had a lower ability to compete and to acquire and use the same resources in the mixture when compared with intact-root plants. Root pruning improved the WUE of winter wheat under both experimental conditions. This suggests that appropriate management for the root system/tillers in wheat crops can be used to increase grain yield and water use efficiency. Specifically, lowering the R/S improved the grain yield and WUE of winter wheat significantly by lowering its competitive ability and improving root efficiency. Therefore, drought-resistance breeding to improve the grain yield and WUE, at least for wheat, should be made by targeted selection of less competitive progeny with a small R/S for cultivation in arid and semiarid areas. 相似文献
12.
《Field Crops Research》2006,95(1):49-63
A model was devised to describe simultaneously the grain masses of water and dry matter against thermal time during grain filling and maturation of winter wheat. The model accounted for a linear increase in water mass of duration anthesis—m1 (end of rapid water assimilation phase) and rate a, followed by a more stable water mass until m2, after which water mass declined rapidly at rate e. Grain dry matter was described as a linear increase of rate bgf until a maximum size (maxgf) was attained at m2. The model was fitted to plot data from weekly samples of grains taken from replicated field experiments investigating effects of grain position (apical or medial), fungicide (five contrasting treatments), sowing date (early or late), cultivar (Malacca or Shamrock) and season (2001/2002 and 2002/2003) on grain filling. The model accounted for between 83 and 99% of the variation () when fitted to data from individual plots, and between 97 and 99% when fitted to treatment means. Endosperm cell number of grains from early-sown plots in the first season were also counted. Differences in maxgf between grain positions and also between cultivars were mostly the result of effects on bgf and were empirically associated with water mass at m1. Fungicide application controlled S. tritici and powdery mildew infection, delayed flag leaf senescence, increased water mass at m1 (wm1), and also increased m2, bgf and maxgf. Fungicide effects on water mass were detected before fungicide effects on dry matter, but comparison of the effects of individual fungicide treatments showed no evidence that effects on wm1, nor on endosperm cell numbers at about m1, were required for fungicide effects on maxgf. 相似文献
13.
This study was conducted in a controlled environment to evaluate the combined effects of water-deficit (imposed at the stem elongation stage) and high temperature (imposed at the booting stage) on the water use efficiency (WUE) and arabinoxylan concentration of two spring wheat varieties (‘Superb’ and ‘AC Crystal’) commonly grown in Canada. The temperature treatments were 22/12 (day/night, T1) and 32/22 °C (T2). Overall, time to maturity under high temperature was 10 days shorter for ‘Superb’ than for ‘AC Crystal’, indicating that ‘Superb’ was more sensitive to high temperature stress. Leaf relative water content (RWC) and specific leaf area (SLA) were more sensitive to drought than to high temperature for both varieties. Drought and high temperature decreased (P < 0.05) biomass, water use and grain yield but increased WUE of ’Superb’ and ‘AC Crystal’. Without temperature stress, significant drought and variety effects were found on CID (carbon isotope discrimination) which was negatively correlated with WUE. All gas exchange parameters declined under drought and high temperature. High temperature increased the grain arabinoxylan concentration (especially the water-extractable arabinoxylans). The different arabinoxylan fractions were positively correlated with WUE suggesting that arabinoxylans can be increased by selecting for increased WUE. 相似文献
14.
Two winter wheat (Triticum aestivum L.) cultivars, namely Jimai22 (JM22) and Zhouyuan9369 (ZY9369), were used to study the effects of a new irrigation policy, supplemental irrigation (SI) based on soil moisture levels, photosynthesis, dry matter accumulation, and remobilization from 2009 to 2011 in Northern China. Two SI treatments were designed based on relative soil moisture contents in the 0–140 cm soil layer: (1) the target soil relative water contents were 75% of field capacity (FC) at jointing and 65% of FC at anthesis (W1), 75% and 70% (W2) in 2009–2010, and (2) the target soil relative water contents were 75% at jointing and 75% at anthesis (W1′), 75% and 80% (W2′) in 2010–2011. Rain-fed treatment (W0) was used as control. Results showed that SI significantly improved the biomass, grain yield and water use efficiency (WUE) of both wheat cultivars. The biomass and grain yield of W1 and W1’ treatments were higher than those of others. The net photosynthetic rate, the actual photochemical efficiency of flag leaf, the accumulation of dry matter, and its remobilization from the vegetative parts to the grains after anthesis in W1 and W1’ treatments were significantly higher than in the other treatments. By contrast, the WUE and irrigation efficiency of W2 and W2’ were significantly lower than those of W1 and W1’. Under the experimental conditions, ‘JM22’ showed higher photosynthetic rate in the last stage of grain filling, more spike number per ha, more kernels per spike, higher 1000-kernels weight and eventually higher WUE than ‘ZY9369’. 相似文献
15.
Root growth,soil water variation,and grain yield response of winter wheat to supplemental irrigation
Water shortage threatens agricultural sustainability in the Huang-Huai-Hai Plain of China. Thus, we investigated the effect of supplemental irrigation (SI) on the root growth, soil water variation, and grain yield of winter wheat in this region by measuring the moisture content in different soil layers. Prior to SI, the soil water content (SWC) at given soil depths was monitored to calculate amount of irritation water that can rehydrate the soil to target SWC. The SWC before SI was monitored to depths of 20, 40, and 60 cm in treatments of W20, W40, and W60, respectively. Rainfed treatment with no irrigation as the control (W0). The mean root weight density (RWD), triphenyl tetrazolium chloride reduction activity (TTC reduction activity), soluble protein (SP) concentrations as well as catalase (CAT), and superoxide dismutase (SOD) activities in W40 and W60 treatments were significantly higher than those in W20. The RWD in 60–100 cm soil layers and the root activity, SP concentrations, CAT and SOD activities in 40–60 cm soil layers in W40 treatment were significantly higher than those in W20 and W60. W40 treatment is characterized by higher SWC in the upper soil layers but lower SWC in the 60–100-cm soil layers during grain filling. The soil water consumption (SWU) in the 60–100 cm soil layers from anthesis after SI to maturity was the highest in W40. The grain yield, water use efficiency (WUE), and irrigation water productivity were the highest in W40, with corresponding mean values of 9169 kg ha?1, 20.8 kg ha?1 mm?1, and 35.5 kg ha?1 mm?1. The RWD, root activities, SP concentrations, CAT and SOD activities, and SWU were strongly positively correlated with grain yield and WUE. Therefore, the optimum soil layer for SI of winter wheat after jointing is 0–40 cm. 相似文献
16.
接种体密度、土壤含水量和土壤温度对大豆疫霉根腐病发生的影响 总被引:3,自引:0,他引:3
在人工气候箱内分析测定了接种体密度、土壤含水量和土壤温度对大豆疫霉根腐病发生的影响。结果表明,每克干土中分别接种0、10、50、100、200、300、400、500、600、700个游动孢子,发病率逐渐升高,每克干土中接种400个游动孢子时发病率达到最高,浓度再升高发病率开始下降。在饱和土壤含水量(40%)条件下,土壤温度在10℃~25℃范围内,发病率随温度升高不断增加, 25℃时发病率达到最高,温度再升高发病率降低。在最适温度(25℃)条件下,土壤含水量在15%~40%之间变化时,发病率逐渐升高,当土壤含水量40%时发病率达到最高,土壤含水量再升高发病率下降。 相似文献
17.
E. Eneji S. Inanaga S. Muranaka J. Li† P. An T. Hattori W. Tsuji 《Grass and Forage Science》2005,60(4):393-398
The effects of five rates [0 (control), 1, 2, 4 and 6 Mg ha?1] of calcium silicate on the growth and water consumption by rhodes grass (Chloris gayana Kunth) and sudan grass (Sorghum sudanense Piper) under wet and dry soil water regimes (60 g and 30 g H2O kg?1 soil respectively) were evaluated in a pot experiment. The effect of the application of silicate on plant biomass was similar to that of the control. However, the shoot and root dry mass varied significantly (P < 0.001) according to the soil water regime and plant species. During the first cut, the shoot dry mass was 5.7 g per pot under the wet soil moisture regime, significantly exceeding that under the dry soil water regime proportionately by 0.68. For sudan grass, the shoot dry mass varied from 3.6 g per pot in the control to 4.3 g per pot in the treatment that received 6 Mg ha?1 of calcium silicate. Plant water demand decreased as the rate of calcium silicate application increased, suggesting that an application of calcium silicate could reduce drought stress and enhance water economy. For the soil under study, the reduction in plant water demand represents a water saving ranging from 0.076 to nearly 0.20. 相似文献
18.
Plastic film mulching is an effective practice to improve water harvest and crop productivity in semiarid areas. The grain yield of maize (Zea mayis) as affected by various mulching practices was studied in the field in 2006 and 2007 to determine a mulching pattern that would increase rainwater harvest and crop yield. In 2006, three treatments were used: (1) flat plot without mulch (CK); (2) two ridges and furrows mulched by one plastic film and maize planted in the furrow between the two ridges (DRM); (3) two rows of maize planted in a ridged bed mulched with plastic (RM). Two additional treatments were tested in 2007: (4) two rows of maize mulched with a 70-cm wide plastic film and then 30 cm of bare soil alternated (NM); (5) maize planted without ridges in double rows 80 cm apart and the whole plot mulched with plastic film (WM). Maize yield was highest in the DRM treatment: 1150 kg ha−1 in 2006 and 6130 kg ha−1 in 2007. This was associated with better topsoil moisture in the planting zone and higher soil temperature in the DRM treatment compared with the other treatments. The soil moisture in DRM reached 10.5% and 22.6%, in 2006 and 2007, respectively, the highest of all the treatments. The mean temperature in DRM was higher than in CK and RM by 1.2 °C and 0.4 °C, respectively in 2006, while in 2007, it was higher than that in CK by 3.1 °C, in RM by 0.6 °C, in NM by1.7 °C and in WM by 0.6 °C in 2007. The higher temperatures in the DRM treatments resulted in the maize maturing earlier than in the other mulched treatments, 15 days earlier than in RM in 2006 and 11 days, 3 days, and 14 days earlier than in RM, WM, and NM, respectively in 2007. The highest water-use efficiency (WUE) was found in DRM in both years. In 2006, the WUE in DRM was six times greater than that in CK and 9.96% greater than in RM. In 2007, the WUE for grain in the DRM treatment was 16.6 kg ha−1 mm−1, 11 times greater than that in CK and greater than RM, NM and WM by 67.7%, 26.7% and 9.2%, respectively. It is concluded that the double ridges and furrow mulching treatment could serve as a model for maize production for small-holder farmers in semiarid regions. 相似文献
19.
The nitrogen-driven trade-off between nitrogen utilisation efficiency (yield per unit nitrogen uptake) and water use efficiency (yield per unit evapotranspiration) is widespread and results from well established, multiple effects of nitrogen availability on the water, carbon and nitrogen economy of crops. Here we used a crop model (APSIM) to simulate the yield, evapotranspiration, soil evaporation and nitrogen uptake of wheat, and analysed yield responses to water, nitrogen and climate using a framework analogous to the rate-duration model of determinate growth. The relationship between modelled grain yield (Y) and evapotranspiration (ET) was fitted to a linear-plateau function to derive three parameters: maximum yield (Ymax), the ET break-point when yield reaches its maximum (ET#), and the rate of yield response in the linear phase (ΔY/ΔET). Against this framework, we tested the hypothesis that nitrogen deficit reduces maximum yield by reducing both the rate (ΔY/ΔET) and the range of yield response to evapotranspiration, i.e. ET# − Es, where Es is modelled median soil evaporation. 相似文献