首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Arginine vasotocin is a hormone produced in the hypothalamus of teleost fish that has been shown to regulate gonad development and sexual behavior. To study the role of arginine vasotocin in the gonadal cycle of the hermaphrodite gilthead seabream, Sparus aurata, we cloned the seabream arginine vasotocin (avt) complementary DNA (cDNA). We investigated the expression of brain avt throughout the gonad cycle using real-time quantitative PCR and compared its expression levels to the expression levels of two key gonadal steroidogenic enzymes, cyp19a1a and cyp11b2. In July, when the process of sex reversal is thought to begin, avt expression was elevated over the previous 2 months. Avt in the brain remained at or above the level of July until November then peaked again in December. There was no difference between males and females in the expression levels of brain avt throughout the year. However, only in ambisexual fish was the expression of the cyp19a1a gonadal aromatase correlated to the expression of avt in the brain. Cyp11b2 did not show any correlation to brain avt expression. We also found that females had more intense body coloration than males and that this intensity peaked prior to spawning. Avt expression and female coloration were positively correlated. The fact that brain avt expression was lowest during gonad quiescence, together with the observation of a correlation between brain avt with gonadal cyp19a1a and body coloration during that time suggests that avt may play a role during the process of sex reversal and spawning of the gilthead seabream.  相似文献   

2.
3.
In fish, spermatogenesis and somatic growth are mainly regulated by hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-somatic (HPS) axes, respectively. Xenoestrogens have been reported to impair spermatogenesis in some fishes, and arrest somatic growth in some others, whereas, whether xenoestrogens are capable of disrupting spermatogenesis and somatic growth simultaneously in fish that exhibits sexual dimorphic growth is little known, and the underlying mechanisms remain poorly understood. In this study, male juveniles of yellow catfish (Pelteobagrus fulvidraco), which exhibits a sexual dimorphic growth that favors males, were exposed to diethylstilbestrol (DES) for 28 days. After exposure, DES significantly disrupted the spermatogenesis (decreased gonadal-somatic index (GSI) and germ cell number) and arrested the somatic growth (declined body weight) of the catfish juveniles. Gene expression and plasma steroid analyses demonstrated the suppressed mRNA levels of genes in HPG axis (gnrh-II, fshβ, and lhβ in the brain and dmrt1, sf1, fshr, cyp17a1, cyp19a1a, and cyp11b2 in the testis) and decreased 17β-estrodial (E2) and 11-ketotestosterone (11-KT) levels in plasma. Further analysis revealed the arrested germ cell proliferation (cyclin d1), meiosis (dmc1, sycp3), and enhanced apoptosis (decreased bcl-2 and elevated bax/bcl-2 ratio) in the testis. Besides, DES also suppressed the mRNA levels of genes in HPS axis (ghrh, gh, and prl in the brain and ghr, igf1, igf2a, and igf2b in the liver). The suppressed HPG and HPS axes were thus supposed to disturb spermatogenesis and arrest somatic growth in yellow catfish. The present study greatly extended our understanding on the mechanisms underlying the toxicity of DES on spermatogenesis and somatic growth of fish.  相似文献   

4.
Teleosts have many spawning strategies and the hormonal control of gametogenesis is not well defined among the species or even, between sexes. To increase the knowledge of gonadotropin hormones, we studied the trend by gene expression of gonadotropin receptors in the follicles and testis at different maturity stages in the European hake (Merluccius merluccius), a multiple-spawning species. With this aim, fshr and lhr were sequenced, characterized, and their gene expression was quantified in oocytes and in testes at different maturity stages. The deduced amino acid sequences were used to phylogenetic studies and evidenced that both receptors are phylogenetically closed to other gadoid species. The gene expression of both receptors was poorly expressed in primary follicles, increased in vitellogenic follicles and to later decrease in hydrated oocytes. In testis, highest levels of lhr were detected during spermiation, while levels of fshr were constant. For the first time, a histological analysis was performed in European hake testes showing an unrestricted lobular testis. To better elucidate the mechanisms involved in the oogenesis of the European hake, the expression of estrogen receptor and cyp19a was also investigated displaying high levels in all classes of follicles. All these data allow to increase the knowledge on reproductive physiology of an important socioeconomical species and it seeks to shed more light on the role of the receptors here studied during gametogenesis of multiple-spawning fish.  相似文献   

5.
Molecular mechanism of sex determination and differentiation of sturgeon, a primitive fish species, is extraordinarily important due to the valuable caviar; however, it is still poorly known. The present work aimed to identify the major genes involved in regulating gonadal development of sterlet, a small species of sturgeon, from 13 candidate genes which have been shown to relate to gonadal differentiation and development in other teleost fish. The sex and gonadal development of sterlets were determined by histological observation and levels of sex steroids testosterone (T), 11-ketotestosterone (11-KT), and 17β-estradiol (E2) in serum. Sexually dimorphic gene expressions were investigated. The results revealed that gonadal development were asynchronous in 2-year-old male and female sterlets with the testes in early or mid-spermatogenesis and the ovaries in chromatin nucleolus stage or perinucleolus stage, respectively. The levels of T and E2 were not significantly different between sexes or different gonadal development stages while 11-KT had the higher level in mid-spermatogenesis testis stage. In all the investigated gonadal development stages, gene dmrt1 and hsd11b2 were expressed higher in male whereas foxl2 and cyp19a1 were expressed higher in female. Thus, these genes provided the promising markers for sex identification of sterlet. It was unexpected that dkk1 and dax1 had significantly higher expression in ovarian perinucleolus stage than in ovarian chromatin nucleolus stage and in the testis, suggesting that these two genes had more correlation with ovarian development than with the testis, contrary to the previous reports in other vertebrates. Testicular development-related genes (gsdf and amh) and estrogen receptor genes (era and erb) differentially expressed at different testis or ovary development stages, but their expressions were not absolutely significantly different in male and female, depending on the gonadal development stage. Expression of androgen receptor gene ar or rspo, which was supposed to be related to ovarian development, presented no difference between gonadal development stages investigated in this study whenever in male or female.  相似文献   

6.
In non-mammalian vertebrates, estrogens and expressions of cyp19a1 and foxl2 play critical roles in maintaining ovary differentiation and development, while dmrt1 and sox9 are male-specific genes in testicular differentiation and are highly conserved. In order to deeply understand the morphological change, sex steroids level and molecular mechanism of triploid female gonadal reversal in rainbow trout, we studied the ovary morphology, tendency of estradiol-17β (E2) and testosterone (T) levels and the relative expressions of dmrt1, cyp19a1, sox9 and foxl2 in juvenile and adult fish. Our results demonstrated that the development of triploid female gonads in rainbow trout went through arrested development, oocytes dedifferentiation, ovary reconstruction and sex reversal finally. During early gonadal development (154–334 days post-fertilization), the expressions of foxl2 and cyp19a1 increased linearly, while expressions of dmrt1 and sox9 were extremely suppressed, and E2 level was higher, while T level was lower. During the mid-to-late period of triploid female gonadal development (574–964 days post-fertilization), the expressions of dmrt1 and sox9 remained high and were very close to the quantity of diploid male genes, and T levels were even reaching diploid male plasma concentrations, while expressions of cyp19a1 and foxl2 were decreased, leading to decrease in E2 level. We realized that the development model of rainbow trout triploid female gonads was extremely rare, and the regulatory mechanism was very special. Genes involved in gonadal development and endogenous estrogens are pivotal factors in fish natural sex reversal.  相似文献   

7.
Heterochronic lin-28 is a conserved RNA-binding protein that plays a key role in the timing of developmental events in organisms. As a crucial heterochronic gene, the protein controls developmental events of the second of four larval stages in Caenorhabditi elegans. Heterochronic let-7 miRNAs are often present in various species and highly conserved in sequence and biological function and are required for various biological processes. Previous studies showed that ten let-7 miRNAs were identified in the Japanese flounder (Paralichthys olivaceus) and that they were primarily expressed during metamorphosis. In this study, we clone and characterize the lin-28a gene from P. olivaceus and exhibit its dynamic expression pattern at different developmental stages and various adult tissues. The results show that the P. olivaceus lin-28a gene has high sequence similarity with other species and is highly expressed in the embryonic stage but weakly expressed in the larval stage. In addition, lin-28a overexpression causes cell proliferation and significantly promotes the levels of pre-let-7a and pre-let-7d while markedly depressing let-7a and let-7d expression in FEC (Flounder Embryonic Cell), which indicate that lin-28 possibly blocks the maturation of let-7 miRNAs. Additionally, lin-28a is identified as a target gene of let-7 miRNAs, and let-7 miRNAs directly regulate lin-28a expression by targeting its 3′ UTR. Taken together, lin-28a along with let-7 miRNA participates in a lin-28/let-7 axis pathway that regulates cell division and timing of embryonic and metamorphic events in P. olivaceus.  相似文献   

8.
There were not any past studies about metallothionein isoforms (smtB and mt2) having anti-oxidative functions on zebrafish after Cd2+ exposure. On the other hand, the anti-oxidative enzymatic factors such as superoxide dismutase (sod), glutathione peroxidase (gpx1a), and catalase (cat) are used as references to investigate whether the smtB and mt2 have anti-oxidative responses on the gills and brain of zebrafish after 1–6 h of 0 and 1.78 μM Cd2+ exposure. The anti-oxidative system such as sod, cat, and gpx1a mRNA expressions demonstrated a cascade response upon Cd2+-induced oxidative stress in the present study. Interestingly, the smtB mRNA expression levels increased by 3.2- to 6.1-fold, and mt2 raised by 4.1- to 11.3-fold in gills at 1 and 3 h after exposure to Cd2+, respectively. On the other hand, the smtB mRNA levels increased by 10.6- to 58.6-fold, but mt2 mRNA levels increased by 2.3- to 11.1-fold in brain at 1 and 3 h after exposure to Cd2+, respectively. In addition, both tissues showed increased apoptosis levels at 3 h, and recovery after 6 h of Cd2+ exposure. From the results, we suggest that both mt2 and smtB play a role in anti-oxidation responses within 6 h after exposure to Cd2+. In conclusion, the smtB mRNA levels have a higher response than mt2 in the brain, but both mRNA expressions appear to have a similar pattern in the gill. We suggest that smtB plays an important role to defend oxidative stress in the brain of adult zebrafish upon acute Cd2+ exposure.  相似文献   

9.
10.
11.
The pituitary adenylate cyclase activating polypeptide (PACAP) is a new type of hypophysiotropic hormone and plays an important role in regulating the synthesis and secretion of growth hormone and gonadotropin. The research on the relationship between PACAP and different growth traits would contribute to explain its function during the process of growth. Moreover, epigenetic modifications, especially DNA methylation at the CpG sites of the SNPs, play important roles in regulating gene expression. The results suggest that a SNP mutation (c.C151G) in the PACAP gene of male half smooth tongue sole (Cynoglossus semilaevis) is significantly associated with growth traits and serum physiological and biochemical parameters such as inorganic phosphorus (P < 0.05). The SNP is located in a CpG-rich region of exon 1. Intriguingly, the transition (C→G) added a new methylation site of PACAP gene. This SNP was also significantly related to the expression and methylation level of PACAP (P < 0.05). Individuals with GG genotype had faster growth rates than those of CG and CC genotypes. Moreover, GG genotype had significantly higher PACAP expression level and lower methylation level than CG and CC genotypes. In the serum indexes, only inorganic phosphorus content within GG genotypes was significantly higher than CC genotypes. This implied that the mutation and methylation status of PACAP gene could influence growth traits and this locus could be considered as a candidate genetic or epigenetic marker for Cynoglossus semilaevis molecular breeding.  相似文献   

12.
13.
14.
This study was conducted to characterize the energy metabolism level and the features of muscle growth regulation during the development of Atlantic salmon (Salmo salar) inhabiting the Indera River (Kola Peninsula, Russia). The activities of aerobic and anaerobic enzymes (cytochrome c oxidase and lactate dehydrogenase) and carbohydrate metabolism enzymes (glucose-6-phosphate dehydrogenase, glycerol-3-phosphate dehydrogenase, and aldolase) were measured in muscle and liver tissue. Gene expression levels of myosin heavy chain (MyHC), myostatin (MSTN-1a), and myogenic regulatory factors (MRFs—MyoD1a, MyoD1b, MyoD1c, Myf5, myogenin) were measured in the white muscles of salmon parr of ages 0+, 1+, 2+, and 3+ and smolts of ages 2+ and 3+. Multidirectional changes in the activity of enzymes involved in aerobic and anaerobic energy metabolism with age were shown in the white muscles of the parr. The cytochrome c oxidase activity was higher in muscles of underyearlings (0+) and yearlings (1+) and decreased in 2+ and 3+ age groups. The activity of lactate dehydrogenase, in contrast, increased with age. The patterns of changes in expression levels of MyoD1a, MyoD1b, myogenin, MyHC, and MSTN-1a at different ages of the parr were similar. Particularly, the expression of these genes peaked in the yearling parr (1+) and then decreased in elder groups. The differences were revealed in parameters studied between the parr and smolts. The level of aerobic and anaerobic metabolism enzyme activities was higher in the white muscles of smolts than in parr. The activity of carbohydrate metabolism enzymes was decreased in the smolts’ livers. The expression levels of MyHC, MyoD1a, MyoD1b, and myogenin were lower in smolts at age 2+ compared to parr. These findings expand our knowledge of age-related and stage-related features of energy metabolism and muscle development regulation in young Atlantic salmon in their natural habitat. The results might be used for monitoring of the salmon population during restoration and rearing.  相似文献   

15.
16.
Myoglobin (Mb) is an oxygen-binding hemoprotein that was once thought to be exclusively expressed in oxidative myocytes of skeletal and cardiac muscle where it serves in oxygen storage and facilitates intracellular oxygen diffusion. In this study, we cloned the coding sequence of the Mb gene from four species, representing three groups, of the schizothoracine fish endemic to the Qinghai-Tibetan Plateau (QTP), then conducted molecular evolution analyses. We also investigated tissue expression patterns of Mb and the expression response to moderate and severe hypoxia at the mRNA and protein levels in a representative of the highly specialized schizothoracine fish species, Schizopygopsis pylzovi. Molecular evolution analyses showed that Mb from the highly specialized schizothoracine fish have undergone positive selection and one positively selected residue (81L) was identified, which is located in the F helix, close to or in contact with the heme. We present tentative evidence that the Mb duplication event occurred in the ancestor of the schizothoracine and Cyprininae fish (common carp and goldfish), and that the Mb2 paralog was subsequently lost in the schizothoracine fish. In S. pylzovi, Mb mRNA is expressed in various tissues with the exception of the intestine and gill, but all such tissues, including the liver, muscle, kidney, brain, eye, and skin, expressed very low levels of Mb mRNA (<?8.0%) relative to that of the heart. The trace levels of Mb expression in non-muscle tissues are perhaps the major reason why non-muscle Mb remained undiscovered for so long. The expression response of the Mb gene to hypoxia at the mRNA and protein levels was strikingly different in S. pylzovi compared to that found in the common carp, medaka, zebrafish, and goldfish, suggesting that the hypoxia response of Mb in fish may be species and tissue-specific. Notably, severe hypoxia induced significant expression of Mb at the mRNA and protein levels in the S. pylzovi heart, which suggests Mb has a major role in the supply of oxygen to the heart of Tibetan Plateau fish.  相似文献   

17.
Although chromosome set manipulation techniques including polyploidy induction and gynogentic induction in flatfish are becoming increasingly mature, there exists a poor understanding of their effects on embryonic development. PAX3 plays crucial roles during embryonic myogenesis and neurogenesis. In olive flounder (Paralichthys olivaceus), there are two duplicated pax3 genes (pax3a, pax3b), and both of them are expressed in the brain and muscle regions with some subtle regional differences. We utilized pax3a and pax3b as indicators to preliminarily investigate whether chromosome set manipulation affects embryonic neurogenesis and myogenesis using whole-mount in situ hybridization. In the polyploid induction groups, 94 % of embryos in the triploid induction group had normal pax3a/3b expression patterns; however, 45 % of embryos in the tetraploid induction group showed abnormal pax3a/3b expression patterns from the tailbud formation stage to the hatching stage. Therefore, the artificial induction of triploidy and tetraploidy had a small or a moderate effect on flounder embryonic myogenesis and neurogenesis, respectively. In the gynogenetic induction groups, 87 % of embryos in the meiogynogenetic diploid induction group showed normal pax3a/3b expression patterns. However, almost 100 % of embryos in the gynogenetic haploid induction group and 63 % of embryos in the mitogynogenetic diploid induction group showed abnormal pax3a/3b expression patterns. Therefore, the induction of gynogenetic haploidy and mitogynogenetic diploidy had large effects on flounder embryonic myogenesis and neurogenesis. In conclusion, the differential expression of pax3a and pax3b may provide new insights for consideration of fish chromosome set manipulation.  相似文献   

18.
This study investigated the plasma biochemical profiles and gene expression levels of crucian carp Carassius carassius subjected to anesthetization with low-voltage constant direct current (DC) and tricaine methanesulfonate (MS222). Fish in the MS222 treatments and the DC treatments were exposed to either two concentrations of MS222 (100 and 200 mg/l) or constant DC with a voltage of 26 V, at a voltage gradient of 0.68 V/cm, respectively. The results showed that low-voltage constant DC immobilized fish more quickly, resulting in significant elevations of plasma cortisol levels compared to exposure of high or low doses of MS222. Electronarcosis led to an increased expression of heat shock proteins 70 (HSP70) as well as HSP90 compared to the treatment group with MS222. Also, electronarcosis enhanced mitochondrial respiratory chain gene (atp6, cox1 and nd5) and antioxidant enzyme gene (CAT, SOD and GSH-px1) expression levels. In conclusion, low-voltage constant DC can disturb fish plasma biochemical profiles and gene expression levels.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号