首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R. Ecker    A. Cahaner  A. Dinoor 《Plant Breeding》1990,104(3):218-223
The inheritance of resistance in the wild wheat species Ae. speltoides L. to Septoria glume blotch (Septoria nodorum Berk.) was investigated. It was characterized by two parameters measured on detached leaves, namely lesion size (LS) and length of latent period (LP), and by the severity of the disease under field conditions (DS). The genetic analysis was based on the F1 and F2 generations of a 4 × 4 diallel cross between four Ae. speltoides accessions showing differential resistance to the pathogen. The three parameters of resistance were highly correlated. Considerable heterosis for resistance was found for each of the parameters in most of the diallel combinations. The estimates of broad-sense heritability were moderately high (0.50 — LS, 0.60 — LP, 0.52 — DS), while the estimates of narrow-sense heritability were low (0.16 for LS, 0.20 for LP, 0.25 for DS). There were no indications for genie interaction. It is suggested that the resistance is controlled by at least two genes with over-dominance of the alleles for higher resistance. Highly resistant Ae. speltoides accessions are a potential source of germplasm for improving the resistance of cultivated wheats to Septoria glume blotch. The possibility of using dominant alleles for resistance in hybrid cultivars is discussed.  相似文献   

2.
The Inheritance of Resistance to Septoria Glume Blotch:   总被引:1,自引:0,他引:1  
R. Ecker    A. Dinoor  A. Cahaner 《Plant Breeding》1989,102(2):113-121
The inheritance of resistance in common wheat (Triticum aestivum, L.) to Septoria glume blotch, caused by the pathogen Septoria nodorum Berk., was studied. Four quantitative parameters of resistance were measured: infection efficiency (IE) and disease severity (DS) on intact young plants together with legion size (LS) and length of latent period (LP) on detached leaves. The method of testing the disease reaction of wheat to S. nodorum on detached leaves was refined and standardised to minimize the non-pathological sources of variation. Four wheat cultivars were tested for their reaction to 11 Septoria nodorum isolates. Two of the cultivars were crossed for studies on the genetics for host resistance, using a single S. nodorum isolate for inoculation; parental, F1, F2 and F3 populations were analysed. Interaction between wheat cultivars and S. nodorum isolates was significant, but its variance component was quite small compared with the main effects of cultivars and isolates, The inheritance of resistance was mainly additive, with low to moderate heritability, apparently controlled by 3 to 4 quantitative genes, with indications of gene interactions. LS and LP were highly correlated, suggesting pleiotrapy for these two parameters of resistance. IE and DS (on intact plants) were moderately correlated to LS and LP (on detached leaves), apparently due to a partial pleiotropy or linkage.  相似文献   

3.
An Ethiopian wheat collection consisting of 293 tetraploid and hexaploid entries was investigated for resistance to powdery mildew, Septoria glume blotch, and leaf rust with the aim of finding probable new genes for resistance to these diseases. Seedlings were screened with isolates of these diseases in the greenhouse or growth chamber. The material was also scored for field resistance to powdery mildew after the fifth leaf stale. The diversity of the reaction types to powdery mildew and Septoria glume blotch was estimated by the Shannon-Weaver diversity index. Thirty-nine entries (13%) of the collection were resistant to moderately resistant co the mildew isolates, 14S-77 and 46—77, that had: a combined virulence spectrum effective against nine identified genes for resistance to powdery mildew. One hundred and et till TV-tour entries (63 %) of the collection showed field resistance to mildew. One hundred and eighty-one entries (62 %) of the collection were at least moderately resistant in an aggressive isolate of Sartorial nodorum. Resistance to a race of leaf rust was detected in one hundred and sixty-eight entries or 58.% of the collection. Generally, resistance to these diseases is concentrated in Central and Southern Ethiopia. The different reaction types of the resistant entries to these diseases and the high estimates of diversity for reaction types indicated the presence of many different probable new genes and genetic backgrounds for resistance to these diseases.  相似文献   

4.
G. Oettler  T. Schmid 《Plant Breeding》2000,119(6):487-490
Septoria nodorum leaf and glume blotch is an important disease of triticale (×_Triticosecale Wittm.) and can cause severe losses of grain yield in some regions. Quantitative genetic parameters for resistance were estimated for 2 years in two locations in triticale genotypes artificially inoculated with S. nodorum. The effect of infection was assessed by a visual symptom rating of flag leaves and spikes and by grain yield traits relative to an uninoculated control. The mean ratings of flag leaves and spikes, calculated from two to four ratings, were 2.6 and 3.9, respectively, with a range of six ratings for spikes and over five for flag leaves. Infection caused an 11.5% mean reduction in kernel weight per spike, which was the result of 13.2% lower 1000‐kernel weight. The number of kernels per spike and 50‐ml weight were little affected. For all relative grain yield traits, genotypic variation was small with high genotype‐environment interaction effects and thus moderate to low heritabilities. In contrast, for visual ratings genotypic variation was high, with low interaction effects leading to high heritabilities. Phenotypic correlation between flag leaf and spike ratings was low, indicating independent disease resistance mechanisms. The best association, although still moderate, was obtained between flag leaf rating and relative 1000‐kernel weight. Therefore, visual disease ratings do not satisfactorily assess the effect of Septoria infection on grain yield traits. The reduction in 1000‐kernel and possibly 50‐ml weight are good indicators, provided that multi‐environment tests are conducted.  相似文献   

5.
H. Walther 《Plant Breeding》1990,105(1):53-61
A yield-based assessment procedure for breeding for resistance to Septoria nodorum (SN) is presented. Artificially infected as well as fungicide-protected plots were analyzed for each genotype. Considerable increase in precision of disease scores was gained by using an assessment matrix for different plant organs and time intervals during disease development. This technique resulted in yield loss: disease attack correlations up to r = 0.85:** and raised coefficients of heritability (h2b= broad sense heritability) with h2b= 0.72 for % yield loss and h2b= 0.86 for SN-attack, calculated for a 3-year replicated field experiment with 105 winter wheat cultivars.  相似文献   

6.
Tan spot (TS), Stagonospora nodorum blotch (SNB), and Septoria tritici blotch (STB) are three major leaf spot diseases of wheat worldwide. Host plant resistance (HPR) is one of the main components in the management of these diseases in wheat. The objective of this study was to identify new sources of resistance to TS (races 1 and 5), SNB, and STB. A total of 164 wheat genotypes developed by the International Maize and Wheat Improvement Center (CIMMYT), Mexico were individually evaluated for TS, SNB and STB in spring and fall of 2006 in the greenhouse. Two experiments were conducted in a randomized complete block design with three replicates. Each replicate consisted of 164 wheat genotypes planted in cones with three seedlings/genotype in each cone and disease reaction was assessed for each race or pathogen at the two- to three-leaf stage. Based on the disease reactions, three wheat genotypes were resistant to both TS and SNB, while 13 genotypes were resistant to TS and STB. Similarly, 13 genotypes were resistant to both SNB and STB. In addition, four wheat genotypes were highly resistant to TS, SNB, and STB. These results suggest that the resistant genotypes identified in this study possess high levels of resistance to multiple leaf spot diseases and could be valuable sources for wheat improvement programs.  相似文献   

7.
Inheritance of Partial Resistance to Net Blotch in Barley   总被引:2,自引:0,他引:2  
Reciprocal crosses were made between 9 different barley genotypes with high genetic variability for net blotch resistance. Parents and 72 F1 plants were used to determine the inheritance of partial resistance to net blotch. Four experiments, one in a growth chamber on seedlings and 3 others in the field on adult plants, were undertaken using a randomised complete block design. An isolate of net blotch from local cultivars was used for inoculation. Non-inoculated plants of one of the field experiments were used for the detached leaf test in petri dishes. Results show that the cultivars ‘Banteng’, and ‘Arrivate’, the Ethiopian line CI 5791, and the Syrian line 79 SIO-10, had a high partial resistance in all experiments. Diallel analysis showed high significant general and specific combining ability when maternal and reciprocal effects were not significant. As the resistance genotypes have a high additive genetic effect, they could be successfully used for breeding purposes.  相似文献   

8.
Summary Foliar symptom severity of seedlings artificially inoculated with S. nodorum were used to idenify the type of gne action controlling resistance to this pathogen in the early generations of two wheat crosses. In both crosses a resistant spring wheat cultivar was crossed to a susceptible cultivar. Reciprocal crosses were included in the analysis to determine if the cytoplasm contributed in any significant degree to the level of resistance present.Results indicated that resistance was polygenic and that it could be explaned prinerpally by additive gene effects. Some differences in reciprocal crosses were evident, but a significant role for the eytoplasm in resistance is not indicated.Cooperative investigations of the Agricultural Research Service of the U. S. Department of Agriculture and the Montana Agricultural Experiment Station. Journal Paper No. 1210.  相似文献   

9.
Septoria tritici blotch constitutes a major disease problem of wheat world-wide. To efficiently breed wheat for resistance to this disease, an understanding is required of the inheritance of resistance. Our objective was to study the quantitative inheritance of resistance under field conditions. A nine-parent diallel and a generation mean experiments were conducted at Toluca, México in 1986 and 1987, respectively, to investigate gene effects. General combining ability effects accounted for most of the variation although specific combining ability effects were detected in some crosses. Ias20*5/H567.71, Thornbird, and RPB709.71/Coc contributed the most to reduced disease severity. Reciprocal effects were detected in two of 36 crosses, where RPB709.71/Coc contributed additional reduced disease severity when used as female. The analysis of generation means confirmed results obtained from the diallel. Additive effects were also most important. Dominance effects and epistasis, mostly of the additive × additive type, were found in some crosses. Hence, substantial genetic progress for resistance can be expected among progeny from crosses with resistant parents. However, selection would be most effective if delayed to later generations because of dominance, and choice of the specific female parent may produce a higher level of resistance.  相似文献   

10.
Two hundred and twelve accessions of 8 diploid and 10 polyploid species of Aegilops were evaluated for resistance to tan-spot disease of wheat, caused by Pyrenophora tritici-repentis (Died.) Drechs., under greenhouse conditions. One or more accessions of Ae. bicornis, Ae. biuncialis, Ae. Crassa, Ae. columnaris, Ae. cylindrica, Ae. speltoides, Ae. squarrosa. Ae. triaristata. Ae. triuncialis, and Ae. Ovata showed resistance following a 24-hour post-inoculation wet period. With a 36-hour wet period, diploids became only slightly or moderately susceptible and resistant polyploids became susceptible. A 48-hour wet period resulted in still greater susceptibility of both diploid and polyploid species.  相似文献   

11.
为了将粘果山羊草的优异农艺性状转移到小麦背景中,本研究用(粘果山羊草/中国春)杂交F1代与普通小麦亲本复交并自交,共获得了42个F4代单株及其衍生的42个F5代株系,并从主要农艺性状、细胞学和高分子量谷蛋白亚基(HMW-GS)等方面对这一批材料进行了研究。研究发现:1、上述F5代株系在形态上与普通小麦十分相似,部分株系的分蘖数和条锈病抗性有显著提高, 部分株系的千粒重表现出超亲现象,具有一定的育种利用价值;2、12个F4代植株的细胞学鉴定发现:7个单株的染色体数目与普通小麦不一致,其中1个单株还可能存在不稳定结构变异。这表明部分参试单株存在细胞学不稳定性现象,需要进一步自交纯合和鉴定;3、聚丙烯酰胺凝胶电泳(SDS-PAGE)检测发现除1株变异株J7-4外,其余材料的HMW-GS组成均和普通小麦亲本一致,变异株的变异机理和它对品质的影响还有待进一步深入研究。本研究为小麦育种提供了一批优异的育种材料。  相似文献   

12.
The reaction of tritordeum and its Hordeum chilense and Triticum spp. parents to Septoria tritici was studied in field and seedling experiments. All H. chilense lines were highly resistant to all the isolates and did not allow pycnidia development. The ‘durum wheat isolate’ developed pycnidia only on durum wheats. The ‘breed wheat isolate’ was very virulent on bread wheat but also on the wild tetra-ploid wheats. The other two isolates were compatible with durum and bread wheat. All hexaploid tritordeums were highly resistant both in the field and the seedling experiments. Some octoploid tritordeums allowed pycnidial development, but at much lower levels than their wheat parent. Resistance in tritordeum was not associated with plant stature and only in octoploid tritordeum was association of resistance with late maturity detected.  相似文献   

13.
T. Danon  Z. Eyal 《Euphytica》1990,47(3):203-214
Summary All possible crosses (including reciprocals) were made among four winter bread (Aurora, Bezostaya 1, Kavkaz, and Trakia) and two Israeli spring wheat cultivars (spring x winter diallel), and among two South American spring wheats (Colotana and Klein Titan) with the same Israeli cultivars (spring x spring diallel) to study the inheritance of resistance to septoria tritici blotch. Parents, F1, F2 and backcrosses were grown in two separated blocks in the field over two years. One block was inoculated with isolate ISR398A1 and another with ISR8036. Each plant was assessed for plant height (cm), days to heading (from emergence or transplanting), and percent pycnidia coverage on the four uppermost leaves. Plant height and maturity had insignificant effects on pycnidia coverage. No cytoplasmic effects could be detected. In the spring x winter diallel general combining ability (GCA) was the major component of variation. Significant specific combining ability (SCA) was present in all cases. Partial dominance was operative in populations inoculated with ISR398A1. Resistance in the winter wheats was controlled by a small number of genes (usually two). The four winter wheats derive their resistance to ISR398A1 from their common parent Bezostaya 1 which lacks the 1B/1R wheat-rye translocation. Their resistance is readily overcome by ISR8036. Inheritance of the South American wheats can be explained by additive effects, with a small number of genes of recessive mode affecting resistance to both isolates. Breeding strategies that favor additive, and additive x dominance gene action should be pursued.  相似文献   

14.
W. Lange    M. Oleo    Th. S. M. De  Bock  M. D''Haeseleer  M. Jacobs 《Plant Breeding》1993,111(3):177-184
Resistance to Septoria nodorum was investigated in seedlings of an amphiploid generated from Triticum dicoccum Shübl. and Aegilops squarrosa Tausch, and in a series of substitution lines of single chromosomes from this synthetic hexaploid into Triticum aestivum cv. ‘Chinese Spring’ in three tests to determine the chromosomal location of resistance. From the Ae. squarrosa parent (D genome), chromosome 5D was found to confer a high level of resistance, reducing lesion cover to near that of the amphiploid in the three tests. Chromosomes 3D, and to a lesser extent, 7D were also found to confer significant resistance to the amphiploid. Three chromosomes, 2A, 3B and 5A, from the T. dicoccum parent (AB genomes) also conferred resistance but to a lesser extent than 7D. Two chromosomes, 2B and 2D, caused a significant decrease in resistance. ‘Chinese Spring’ may thus carry genes for resistance to S. nodorum on these chromosomes which are absent in the synthetic hexaploid.  相似文献   

15.
小麦与山羊草双二倍体抗病性的研究与利用   总被引:6,自引:1,他引:6  
许树军  董玉琛 《作物学报》1990,16(2):106-111
本文报道了波斯小麦与粗山羊草(5个品系),小伞山羊草和卵穗山羊草双二倍体及其亲本的抗叶锈和白粉病鉴定结果。粗山羊草对叶锈的抗性受波斯小麦品系 PS 5(不抗叶锈)的抑制,在双二倍体中不能表现。小伞山羊草和卵穗山羊草对叶锈的抗性不受波斯小麦的影响,能在双二倍体中充分表达。以对白粉病免疫的波斯小麦为母本与免疫的山羊  相似文献   

16.
H. Ma  G. R. Hughes 《Euphytica》1993,70(1-2):151-157
Summary Resistance to septoria nodorum blotch in Triticum monococcum, T. tauschii, T. timopheevii, T. dicoccum and T. durum was evaluated on plants at the three-leaf stage in greenhouse tests. A high frequency of resistant genotypes was found in T. monococcum, T. tauschii and T. timopheevii, but not in T. dicoccum and T. durum. The resistance of F1 plants of crosses of resistant T. monococcum (PI 289599) and T. timopheevii (PI 290518) accessions with susceptible common wheat cv. Park and durum wheat cv. Wakooma, respectively, was evaluated on the basis of percentage leaf necrosis, lesion number, lesion size and incubation period. No dominance was found for long incubation period, but various dominance relationships occurred for low percentage leaf necrosis, low lesion number and small lesion size, depending on the cross. Multiple regression analysis showed that lesion number contributed more to percentage leaf necrosis than lesion size or incubation period. Resistance to septoria nodorum blotch was transferred successfully from T. timopheevii to cultivated durum wheat. Resistant BC1F7 lines, recovered from the T. timopheevii (PI 290518) × Wakooma cross, showed normal chromosome behaviour at meiosis (14 bivalents) and were self-fertile. However, an effective level of resistance was not recovered in lines derived from the other interspecific crosses.  相似文献   

17.
Summary Seven soft red winter wheat cultivars were evaluated for partial resistance to Leptosphaeria nodorum under field conditions. The results demonstrate that resistance is available among cultivars that are adapted to the southeastern U.S. and that resistance is long lasting. Resistant cultivars had longer incubation and latent periods, slower rates of lesion development, and reduced the level of sporulation of L. nodorum. Seedlings of susceptible cultivars sustained severe disease with dew periods as short as 48 hr in greenhouse tests. One resistant cultivar sustained little damage with dew period as long as 144 hr.Latent period was shortest on the second leaf below the flag leaf (F-2 leaf) of all cultivars and longest on the flag leaf which reflected the effect of microclimate and leaf age. The range in length of latent period on the flag, F-1, and F-2 leaves of resistant cultivars was less than that for susceptible cultivars. Differences between cultivars were greatest (up to 6.8 days) for the F-2 leaf. A delay in production of inoculum on the F-2 and lower leaves of resistant cultivars should delay infection of the flag leaf and spike.The greatest differentiation among cultivars for sporulation of L. nodorum was on upper leaves at Feekes growth stage 11.2. Oasis consistently had less sporulation than other cultivars at all sampling dates and leaf positions. The rate of disease progress up the plant (disease severity) and area under the disease progress curve were also least on Oasis.There were significant correlations among components of resistance and associated components suggesting that a single or interrelated mechanisms control expression of resistance. Overall, Oasis was the most resistant cultivar followed by Coker 762 and Coker 747. There cultivars have remained resistant for ten or more years. Stacy was intermediate in resistance and was the most variable of the seven cultivars for the components tested. Holley, Omega 78, and Florida 301 were highly susceptible by all criteria tested. Plant height was not a factor in resistance. The resistant cultivars are mostly later in maturity than the susceptible cultivars. In this study, crop maturity was similar under existing environmental conditions during the two seasons when most data were collected.  相似文献   

18.
Screening of 144 varieties of celery A. graveolens L. for late blight (Septoria apiicola Speg.) resistance resulted in the detection of significant differences for disease reaction. However, each accession displayed greater than 25 % leaf necrosis area due to the disease pathogen. Hence the magnitude of infection in the least susceptible plants was still too great to use them as a valuable source for resistance. The wild species A. chilense and A. panul exhibited a few discrete yellow spots with very little, if any, pycnidial development. This type of resistance was not observed in any accession of celery screened. The degree of resistance was intermediate in the F1 hybrids between A. graveolens × A. chilense and A. graveolens×A. panul, indicating incomplete dominance. The resistance to late blight found in these wild species and their ability to cross with celery provides a novel germplasm source for breeding celery lines with improved resistance to late blight.  相似文献   

19.
A. K. Joshi    S. Kumar    R. Chand  G. Ortiz-Ferrara   《Plant Breeding》2004,123(3):213-219
Three F1 progenies and their families in the segregating generations (F3, F4, F5 and F6), obtained after crossing resistant × susceptible wheat genotypes were studied in the field to determine the genetics of resistance to spot blotch caused by Bipolaris sorokiniana. Spot blotch scores in the F1 generation showed absence of dominance. Individually threshed F2 plants were used to advance the generations. Progenies (200‐250) of resistant genotypes Acc. No. 8226, Mon/Ald, Suzhoe#8 crossed with susceptible ‘Sonalika’ were evaluated in the F3, F4, F5 and F6 generations under induced epiphytotic conditions. Based on disease score distribution in individual progeny rows, F3 progenies were grouped into four classes: homozygous resistant, homozygous susceptible, segregating resistant and segregating susceptible. Resistance appeared to be under the control of three additive genes. The presence of three genes was also noted in the distribution of F4 and F5 lines. In the case of F6 progeny rows, both quantitative and qualitative models were used to estimate the number of segregating genes based on a 2‐year trial. It appeared that resistance to spot blotch was controlled by the additive interaction of more than two genes, possibly only three.  相似文献   

20.
Z. Eyal 《Euphytica》1992,61(1):25-35
Summary Wheat cultivars of diverse genetical background and response to Septoria tritici were inoculated during 2 years in the field with single or mixtures of isolates. Significant reductions in pycnidial coverage were recorded for mixtures of 2 or 5 isolates relative to the virulent isolate ISR8036 under the moderate 1989/1990 epidemic. The interactions between cultivars and all possible combinations among ISR398A1, USR8036 and the 1:1. mixture of the 2 isolates were highly significant. Cultivars exposed to mixtures of isolates expressed differential response in pycnidial coverage compared to the single isolate response. The coverage in the mixtures was significantly less than that of the arithmetic mean between the two isolates. Under the severe 1990/1991 epidemic pycnidial coverage on cultivars inoculated with the mixture of the same 2 isolates did not differ statistically from that of ISR8036, yet, ISR398A1 differed from ISR8036 and the isolate mixture. Losses in 1000-kernel weight for 12 wheat cultivars which were repeated during the 2-trial-years were significantly lower in the isolate mixture relative to that of ISR8036. The suppression of symptoms in isolate mixture relative to the expected expression of the most virulent component may be indicative of differential aggressiveness of isolates regardless of their virulence. The phenomenon may affect screening and selection procedures in breeding for resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号