首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Milk proteins contain numerous potential bioactive peptides, which may be released by digestive proteases or by the proteolytic system of lactic acid bacteria during food processing. The capacity of Streptococcus thermophilus to generate peptides, especially bioactive peptides, from bovine caseins was investigated. Strains expressing various levels of the cell envelope proteinase, PrtS, were incubated with α(s1)-, α(s2)-, or β-casein. Analysis of the supernatants by LC-ESI-MS/MS showed that the β-casein was preferentially hydrolyzed, followed by α(s2)-casein and then α(s1)-casein. Numbers and types of peptides released were strain-dependent. Hydrolysis appeared to be linked with the accessibility of different casein regions by protease. Analysis of bonds hydrolyzed in the region 1-23 of α(s1)-casein suggests that PrtS is at least in part responsible for the peptide production. Finally, among the generated peptides, 13 peptides from β-casein, 5 from α(s2)-casein, and 2 from α(s1)-casein have been reported as bioactive, 15 of them being angiotensin-converting enzyme inhibitors.  相似文献   

2.
Chymosin-induced coagulation of individual milk proteins during incubation at 30 °C was investigated using a proteomic approach. The addition of chymosin (0.006 units/mL) caused the milk proteins to coagulate after a 3 h incubation period. Approximately 88% of the milk proteins were coagulated into the milk pellet fraction, and the protein concentration of the milk supernatant fraction (MSF) decreased from 29.88 ± 0.12 to 3.74 ± 0.13 mg/mL. SDS-PAGE analysis showed that α(S)-, β- and κ-caseins in the MSF were almost depleted and that the total intensity of the protein bands corresponding to α(S)-caseins (α(S1) and α(S2)), β-casein, and κ-casein decreased from 1088.0, 901.5, and 617.0 area units to 6.9, 6.1, and 5.2 area units, respectively. Two-dimensional electrophoresis analysis indicated that α(S1)-, α(S2)-, β-, and κ-casein and a fraction of the β-lactoglobulin and serum albumin were found in the MSF following incubation with chymosin.  相似文献   

3.
The effects of protein oxidation, for example of methionine residues, are linked to many diseases, including those of protein misfolding, such as Alzheimer's disease. Protein misfolding diseases are characterized by the accumulation of insoluble proteinaceous aggregates comprised mainly of amyloid fibrils. Amyloid-containing bodies known as corpora amylacea (CA) are also found in mammary secretory tissue, where their presence slows milk flow. The major milk protein κ-casein readily forms amyloid fibrils under physiological conditions. Milk exists in an extracellular oxidizing environment. Accordingly, the two methionine residues in κ-casein (Met(95) and Met(106)) were selectively oxidized and the effects on the fibril-forming propensity, cellular toxicity, chaperone ability, and structure of κ-casein were determined. Oxidation resulted in an increase in the rate of fibril formation and a greater level of cellular toxicity. β-Casein, which inhibits κ-casein fibril formation in vitro, was less effective at suppressing fibril formation of oxidized κ-casein. The ability of κ-casein to prevent the amorphous aggregation of target proteins was slightly enhanced upon methionine oxidation, which may arise from the protein's greater exposed surface hydrophobicity. No significant changes to κ-casein's intrinsically disordered structure occurred upon oxidation. The enhanced rate of fibril formation of oxidized κ-casein, coupled with the reduced chaperone ability of β-casein to prevent this aggregation, may affect casein-casein interaction within the casein micelle and thereby promote κ-casein aggregation and contribute to the formation of CA.  相似文献   

4.
Molecular changes in milk proteins during storage of UHT-treated milk have been investigated using two-dimensional electrophoresis (2-DE) coupled to MALDI-TOF mass spectrometry. UHT-treated samples were stored at three different temperatures, 4 °C, 28 °C, and 40 °C, for two months. Three main changes could be observed on 2-DE gels following storage. They were (1) the appearance of diffuse staining regions above the position of the monomeric caseins caused by nondisulfide cross-linking of α and β-caseins; (2) the appearance of additional acidic forms of proteins, predominantly of α(S1)-casein, caused by deamidation; and (3) the appearance of "stacked spots" caused by lactosylation of whey proteins. The extent of the changes increased with increased storage temperature. Mass spectrometric analysis of in-gel tryptic digests showed that the cross-linked proteins were dominated by α(S1)-casein, but a heterogeneous population of cross-linked forms with α(S2)-casein and β-casein was also observed. Tandem MS analysis was used to confirm deamidation of N(129) in α(S1)-casein. MS analysis of the stacked spots revealed lactosylation of 9/15 lysines in β-lactoglobulin and 8/12 lysines in α-lactalbumin. More extensive analysis will be required to confirm the nature of the cross-links and additional deamidation sites in α(S1)-casein as the highly phosphorylated nature of the caseins makes them challenging prospects for MS analysis.  相似文献   

5.
17O NMR spectroscopy and (13)C NMR spectroscopy have been used to study the mechanism of interaction of sugars with bovine and caprine caseins in D(2)O. The (17)O NMR relaxation results showed in all cases an increase in water of hydration, as a result of added sugar; this was predominantly associated with "trapped" water in the caseins. Analysis of the vir al coefficients, obtained from the (17)O relaxation data, suggested that preferential interactions occur in the sugar-protein solutions. This could be the result of either sugar binding or a solute-solute thermodynamic effect, preferential hydration. The addition of sugars to deuterated solutions of bovine casein and caprine casein high in alpha(s1)-casein had little or no effect on either line width or chemical shifts of the (13)C NMR spectra of these milk proteins. (13)C NMR studies of sucrose, at various concentrations (100-300 mM) in the presence of caprine casein high in alpha(s1)-casein, showed no changes in either chemical shifts or T(1) values. This indicates that the sugar molecules tumble isotropically and therefore neither bind to the protein nor affect viscosity in the protein-sugar studies. All of these data suggest that the preferential exclusion of the sugar from the domain of the caseins results in preferential hydration of the caseins.  相似文献   

6.
Ragusano is a pasta filata cheese produced from raw milk in Sicily. The proteolysis was extensively analyzed after stretching (day 0), at 4 and 7 months of ripening through soluble nitrogen, urea-PAGE, and peptide identification by tandem mass spectrometry. After stretching, 123 peptides were identified: 72 arising from β-casein, 34 from α(s1)-casein, and 17 from α(s2)-casein. The main protein splitting corresponded to the action of plasmin, chymosin, cathepsin D, cell envelope proteinase, and peptidase activities of lactic acid bacteria. Unlike other types of cheeses, <10% residual β- and α(s)-caseins remained intact at 7 months, indicating original network organization based on large casein fragments. The number of identified soluble peptides also dramatically decreased after 4 and 7 months of ripening, to 47 and 25, respectively. Among them, bioactive peptides were found, that is, mineral carrier, antihypertensive, and immunomodulating peptides and phosphopeptides.  相似文献   

7.
Prolyl-rich peptides derived from hydrolysates of bovine caseins have been previously shown to inhibit angiotensin converting enzyme (ACE) activity, suggesting that they may also be able to inhibit the enzymatic activities of prolyl-specific peptidases. This study shows that peptides derived from α(S1)-casein and β-casein inhibited the enzymatic activities of purified recombinant matrix metalloprotease (MMP)-2, MMP-7, and MMP-9. The inhibitory efficacy was sequence-dependent. These peptides also selectively inhibited the enzymatic activities of prolyl-amino-peptidases, prolyl-amino-dipeptidases, and prolyl-endopeptidases in extracts of HT-29 and SW480 human colon carcinoma cells, but not in intact cells. They were not cytotoxic or growth inhibitory for these cells. Thus, the prolyl-rich selected peptides were good and selective inhibitors of MMPs and post-proline-cleaving proteases, demonstrating their potential to control inadequate proteolytic activity in the human digestive tract, without inducing cytotoxic effects.  相似文献   

8.
Casein micelles were separated from unheated reconstituted skim milk powder (RSMP) and were resuspended in the serum of RSMP that had been heated, with and without dialysis of this serum against unheated RSMP. Using size-exclusion chromatography, it was found that the soluble complexes of whey protein (WP) with κ-casein in the serum of the heated milk bind progressively to unheated casein micelles during renneting, even prior to the onset of clotting. Similar trends were noted when casein micelles from RSMP heated at pH values of 6.7, 7.1, or 6.3, each with different amounts of WP coating the micelles, were renneted in the presence of soluble WP/κ-casein complexes. No matter what was the initial load of micelle-bound WP complexes, all micelle types were capable of binding additional serum protein complexes during renneting. However, it is not clear that this binding of WP/κ-casein complexes to the micellar surface is a direct cause of the impaired rennet clotting of the RSMP.  相似文献   

9.
The effect of the ripening time on the proteolytic process in cheeses made from ewe's milk during a 139-day ripening period was monitored by the use of capillary electrophoresis of pH 4.6 insoluble fraction. Totals of 18 and 21 peaks were recognized and matched in the electropherograms obtained with a fused-silica capillary and a neutral capillary (hydrophilically coated), respectively. These peaks correspond to intact ovine caseins and their hydrolysis products (alpha(s1)-casein I, alpha(s1)-casein II, alpha(s1)-casein III, alpha(s2)-casein, beta(1)-casein, beta(2)-casein, p-kappa-casein, alpha(s1)-I-casein, gamma(1)-casein, gamma(2)-casein, and gamma(3)-casein). The alpha(s)-caseins (alpha(s1)- and alpha(s2)-casein) displayed similar degradation pattern to one another, but different from those of beta-caseins (beta(1)- and beta(2)-casein). beta-Caseins were very much undergoing lesser degradation during the ripening time than alpha(s)-casein. Finally, partial least-squares regression and principal components regression were used to predict the ripening time in cheeses. The models obtained yielded good results since the root-mean-square error in prediction by cross validation was <8.6 days in all cases.  相似文献   

10.
Low concentrations of a disulfide reducing agent were added to unheated and heated (80 °C for 30 min) skim milk, with and without added whey protein. The reduction of the β-lactoglobulin and κ-casein disulfide bonds was monitored over time using electrophoresis. The distribution of the proteins between the colloidal and serum phases was also investigated. κ-Casein disulfide bonds were reduced in preference to those of β-lactoglobulin in both unheated and heated skim milk (with or without added whey protein). In addition, in heated skim milk, while the serum κ-casein was reduced more readily than the colloidal κ-casein, the distribution of κ-casein between the two phases was not affected.  相似文献   

11.
Heated (20-100 °C/0-30 min) skim milks (pH 6.5-7.1) were diluted in buffer (pH 7.0). Rennet was added, and the particle size with time was measured. For all samples, the size initially decreased (lag phase) and then increased (aggregation phase). Milks heated at ≤60 °C had short lag phases and rapid aggregation phases regardless of pH. Milks heated at >60 °C at pH 6.5 had long lag phases and slow aggregation phases. As the pH increased, the lag phase shortened and the aggregation phase accelerated. The aggregation time was correlated with the level of whey protein associated with the casein micelles and with the level of κ-casein dissociated from the micelles. Heated milks formed weak gels when renneted. It is proposed that the milks heated at low pH have whey proteins associated with the casein micelles and that these denatured whey proteins stabilize the micelles to aggregation by rennet and therefore inhibit gelation. In the milks heated at higher pH, the whey proteins associate with κ-casein in the serum and, on rennet treatment, the κ-casein-depleted micelles and the serum-phase whey protein/κ-casein complexes aggregate; however, the denatured whey proteins stabilize the aggregates so that gelation is still inhibited.  相似文献   

12.
Competitive adsorption of alpha(s)-casein and beta-casein from a bulk solution mixture to the triolein-water interface has been studied. Although the binding affinity of alpha(s)-casein to the triolein-water interface was lower than that of beta-casein in single-component systems, in a 1:1 mixture of alpha(s)-casein and beta-casein in the bulk solution the ratio of interfacial concentrations of alpha(s)-casein to beta-casein at equilibrium was about 2:1, indicating that alpha(s)-casein was preferentially adsorbed to the triolein-water interface. Furthermore, the equilibrium composition of alpha(s)-casein and beta-casein in the interfacial film at various bulk concentration ratios did not follow a simple Langmuir adsorption model. This deviation from ideal behavior was mainly due to thermodynamic incompatibility of mixing of these caseins in the interfacial region. The value of the incompatibility parameter, X(12), for these caseins at the triolein-water interface was much greater than that at the air-water interface. Displacement experiments showed that while alpha(s)-casein could dynamically displace beta-casein when the latter was in an unsaturated monolayer state at the interface, it could not do so when beta-casein was in a saturated monolayer film state. It is hypothesized that, because of thermodynamic incompatibility of mixing, the alpha(s)-casein and beta-casein mixed film at the oil-water interface may undergo two-dimensional phase separation.  相似文献   

13.
The cationic hydroxyethylcellulose Polyquaternium 10 (PQ10) was found to produce a dose-dependent destabilization of casein micelles from whole or skim milk without affecting the stability of most of the whey proteins. The anionic phosphate residues on caseins were not determinant in the observed interaction since the destabilization was also observed with dephosphorylated caseins to the same extent. However, the precipitation process was completely inhibited by rising NaCl concentration, indicating an important role of electrostatic interactions. Furthermore, the addition of 150 mM NaCl solubilized preformed PQ10-casein complexes, rendering a stable casein suspension without a disruption of the internal micellar structure as determined by dynamic light scattering. This casein preparation was found to contain most of the Ca2+ and only 10% of the lactose originally present in milk and remained as a stable suspension for at least 4 months at 4 degrees C. The final concentration of PQ10 determined both the size of the casein-polymer aggregates and the amount of milkfat that coprecipitates. The presence of PQ10 in the aggregates did not inhibit the activity of rennet or gastrointestinal proteases and lipases, nor did it affect the growth of several fermentative bacteria. The cationic cellulose PQ10 may cause a reversible electrostatic precipitation of casein micelles without disrupting their internal structure. The reversibility of the interaction described opens the possibility of using this cationic polysaccharide to concentrate and resuspend casein micelles from whole or skim milk in the production of new fiber-enriched lactose-reduced calcium-caseinate dairy products.  相似文献   

14.
Andosols and the soil components (allophanes, humic acids, and goethite) had been autoclaved to destroy the nuclease activity of soil microflora. DNA adsorption by allophanes and Andosols was decreased by increasing the amount of α-casein added to the allophanes and to soils up to casein concentration of 5 mg ml?1. DNA adsorption by humic acids was significantly increased by increasing the amount of α-casein up to 1.0 mg ml?1, whereas the addition of 20 mg α-casein ml?1 completely blocked DNA adsorption. These results can explain why the addition of excess skim milk is operationally needed for effective DNA extraction from Andosols. The amount of DNA adsorbed by Andosols treated with dephosphorylated α-casein was significantly higher than that of not treated Andosols (p?相似文献   

15.
The effectiveness of β-casein as a chaperone in the aggregation of whey proteins was investigated. β-Casein altered heat-induced aggregation as shown by a reduction in turbidity of β-lactoglobulin, α-lactalbumin, and bovine serum albumin (BSA) solutions. The pH of the mixtures greatly affected how much β-casein reduced the turbidity of the solutions; the maximum reductions in turbidity were observed at pH 6.0. Reducing the pH decreased the effectiveness of β-casein as a chaperone. An increase in ionic strength by the addition of NaCl or CaCl(2) also decreased the effectiveness of the chaperone. The addition of CaCl(2) had a larger effect than the addition of NaCl. The chaperone effect was seen at temperatures up to 145 °C. Differential scanning calorimetry (DSC) showed that β-casein did not alter the denaturation temperature of β-lactoglobulin. The kinetics curves for loss of native protein and turbidity development showed that β-casein did not function by slowing the aggregation process. It was concluded that β-casein competes with whey protein in the aggregate process and the aggregates formed in the presence of β-casein are smaller in size than those formed during whey protein self-aggregation. The formation of smaller aggregates gives rise to less turbid, more soluble protein solutions.  相似文献   

16.
The effect of the ripening time on the proteolytic process in cheeses manufactured from mixtures of cow's and ewe's milk during a 167-day ripening period was monitored by capillary electrophoresis of the pH 4.6-insoluble fraction. Totals of 21 and 16 peaks were recognized and matched in the electropherograms obtained with a fused-silica capillary and a neutral capillary (hydrophilically coated), respectively. These peaks corresponded to intact bovine and ovine caseins and their hydrolysis products (e.g., alpha(s1)-casein, gamma-caseins). In 167-day-old cheeses, bovine alpha(s0)-casein (alpha(s1)-casein 9P) had been completely degraded and 6% of the residual bovine alpha(s1)-casein remained intact. Breakdown of the beta-casein fraction was lower than that of the alpha(s)-casein fraction. Finally, partial least-squares regression and principal component regression were used to predict the ripening time in cheeses. The root-mean-square errors in prediction by cross-validation were <7.8 days in all cases.  相似文献   

17.
Application of a sensomics approach on the water-soluble extract of a matured Gouda cheese including gel permeation chromatography, ultrafiltration, solid phase extraction, preparative RP-HPLC, and HILIC combined with analytical sensory tools enabled the comprehensive mapping of bitter-tasting metabolites. LC-MS-TOF and LC-MS/MS, independent synthesis, and sensory analysis revealed the identification of a total of 16 bitter peptides formed by proteolysis of caseins. Eleven previously unreported bitter peptides were aligned to beta-casein, among which 6 peptides were released from the sequence beta-CN(57-69) of the N terminus of beta-casein and 2 peptides originated from the C-terminal sequence beta-CN(198-206). The other peptides were liberated from miscellaneous regions of beta-casein, namely, beta-CN(22-28), beta-CN(74-86), beta-CN(74-77), and beta-CN(135-138), respectively. Six peptides were found to originate from alpha(s1)-casein and were shown to have the sequences alpha(s1)-CN(11-14), alpha(s1)-CN(56-60), alpha(s1)-CN(70/71-74), alpha(s1)-CN(110/111-114), and alpha(s1)-CN(135-136). Sensory evaluation of the purified, synthesized peptides revealed that 12 of these peptides showed pronounced bitter taste with recognition thresholds between 0.05 and 6.0 mmol/L. Among these peptides, the decapeptide YPFPGPIHNS exhibited a caffeine-like bitter taste quality at the lowest threshold concentration of 0.05 mmol/L.  相似文献   

18.
The first enzyme of the basidiomycete Piptoporus soloniensis, a peptidase (PsoP1), was characterized after isolation from submerged cultures, purification by fractional precipitation, and preparative native-polyarylamide gel electrophoresis (PAGE). The native molecular mass of PsoP1 was 38 kDa with an isoelectric point of 3.9. Similar to chymosin from milk calves, PsoP1 showed a maximum milk-clotting activity (MCA) at 35-40 °C and was most stable at pH 6 and below 40 °C. The complete inhibition by pepstatin A identified this enzyme as an aspartic peptidase. Electrospray ionization-tandem MS showed an amino acid partial sequence that was more homologous to mammalian milk clotting peptidases than to the chymosin substitute from a fungal species, such as the Zygomycete Mucor miehei. According to sodium dodecyl sulfate-PAGE patterns, the peptidase cleaved κ-casein in a way similar to chymosin and hydrolyzed β-casein slowly, as it would be expected from an efficient chymosin substitute.  相似文献   

19.
The molecular motion of water was studied in glucono-δ-lactone-acidified skim milk powder (SMP) solutions with various pH values and dry matter contents. NMR relaxometry measurements revealed that lowering the pH in SMP solutions affected 17O and 1H T2 relaxation rates almost identically. Consequently, the present study indicates that the proteins present in the samples do not affect the 1H relaxation behavior markedly, even at relatively high SMP concentrations (15-25%). Comparison of rheological measurements and NMR measurements suggested that the collapse of κ-casein during acidification could contribute to the initial decrease in 17O and 1H relaxation rate in the pH range between 6.6 and 5.5 for 15% SMP and in the pH range between 6.6 and 5.9 for 25% SMP. However, below pH 5.5 the viscosity and 17O and 1H NMR relaxation rates did not correlate, revealing that the aggregation of casein micelles, which increases viscosity below pH 5.5, does not involve major repartitioning of water.  相似文献   

20.
This work addresses the characterization of phosphopeptides in bovine κ-casein macropeptide by reversed-phase liquid chromatography-electrospray ionization-tandem mass spectrometry (RPLC-ESI-MS(2)). Two different mass spectrometers, equipped with an ion trap (IT) or a quadrupole time-of-flight (Q-TOF) analyzer, were used to perform an accurate phosphorylation site assignment. A total of 8 phosphopeptides from 26 identified peptides were characterized. MS(2) spectra of phosphopeptides were dominated by the neutral loss of a phosphoric acid molecule (H(3)PO(4)) and sufficient informative fragment ions resulting from peptide backbone cleavages enabling the elucidation of the phosphopeptide sequence. A higher number of sequence informative b and y ions were detected using a Q-TOF instead of an IT analyzer. In addition to the well-established phosphorylation sites at Ser(149) and Ser(127), this study also revealed the presence of two minor phosphorylation sites at Thr(145) and Ser(166). These findings indicate that RPLC-ESI-MS(2) on a Q-TOF analyzer is a useful technique for identifying low-abundance phosphorylation sites in caseins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号