首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pharmacokinetics and bioavailability of rifampin were determined after IV (10 mg/kg of body weight) and intragastric (20 mg/kg of body weight) administration to 6 healthy, adult horses. After IV administration, the disposition kinetics of rifampin were best described by a 2-compartment open model. A rapid distribution phase was followed by a slower elimination phase, with a half-life (t1/2[beta]) of 7.27 +/- 1.11 hours. The mean body clearance was 1.49 +/- 0.41 ml/min.kg, and the mean volume of distribution was 932 +/- 292 ml/kg, indicating that rifampin was widely distributed in the body. After intragastric administration of rifampin in aqueous suspension, a brief lag period (0.31 +/- 0.09 hour) was followed by rapid, but incomplete, absorption (t1/2[a] = 0.51 +/- 0.32 hour) and slow elimination (t1/2[d] = 11.50 +/- 1.55 hours). The mean bioavailability (fractional absorption) of the administered dose during the first 24 hours was 53.94 +/- 18.90%, and we estimated that 70.0 +/- 23.6% of the drug would eventually be absorbed. The mean peak plasma rifampin concentration was 13.25 +/- 2.70 micrograms/ml at 2.5 +/- 1.6 hours after dosing. All 6 horses had plasma rifampin concentrations greater than 2 micrograms/ml by 45 minutes after dosing; concentrations greater than 3 micrograms/ml persisted for at least 24 hours. Mean plasma rifampin concentrations at 12 and 24 hours after dosing were 6.86 +/- 1.69 micrograms/ml and 3.83 +/- 0.87 micrograms/ml, respectively. We tested 162 isolates of 16 bacterial species cultured from clinically ill horses for susceptibility to rifampin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The pharmacokinetics of flunixin were studied in 6 adult lactating cattle after administration of single IV and IM doses at 1.1 mg/kg of body weight. A crossover design was used, with route of first administration in each cow determined randomly. Plasma and milk concentrations of total flunixin were determined by use of high-pressure liquid chromatography, using an assay with a lower limit of detection of 50 ng of flunixin/ml. The pharmacokinetics of flunixin were best described by a 2-compartment, open model. After IV administration, mean plasma flunixin concentrations rapidly decreased from initial concentrations of greater than 10 micrograms/ml to nondetectable concentrations at 12 hours after administration. The distribution phase was short (t1/2 alpha, harmonic mean = 0.16 hours) and the elimination phase was more prolonged (t1/2 beta, harmonic mean = 3.14 hours). Mean +/- SD clearance after IV administration was 2.51 +/- 0.96 ml/kg/min. After IM administration, the harmonic mean for the elimination phase (t1/2 beta) was prolonged at 5.20 hours. Bioavailability after IM dosing gave a mean +/- SD (n = 5) of 76.0 +/- 28.0%. Adult, lactating cows (n = 6) were challenge inoculated with endotoxin as a model of acute coliform mastitis. After multiple administration (total of 7 doses; first IV, remainder IM) of 1.1 mg/kg doses of flunixin at 8-hour intervals, plasma flunixin concentrations were approximately 1 microgram/ml at 2 hours after each dosing and 0.5 micrograms/ml just prior to each dosing. Flunixin was not detected in milk at any sampling during the study.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The pharmacokinetics of theophylline and dyphylline were determined after IV administration in horses. In a preliminary experiment, the usual human dosage (milligram per kilogram) of each drug was given to 1 horse. Results were used to calculate dosages for a cross-over study, using 6 horses for each drug. Theophylline plasma concentrations decreased triexponentially in 5 of 6 healthy horses after IV infusion of 10 mg of aminophylline/kg of body weight for 16 to 32 minutes. In the 6 horses, total body elimination rate constants were variable, and the half-life of theophylline was 9.7 to 19.3 hours. Clearance was 42.3 to 69.2 ml/hr/kg. The initial distribution phase was rapid (t1/2 approx 3.5 to 4 minutes); a 2nd distribution phase was slower (t1/2 approx 1.5 to 2 hours). Plasma concentrations of theophylline were in the assumed effective range (10 to 20 micrograms/ml) from 15 minutes until 40 minutes after time zero. The mean apparent volume of distribution was 1.02 L/kg. After bolus IV injection of dyphylline (20 mg/kg), pharmacokinetics were best described by a 2-compartment open model in 2 horses and by a 3-compartment open model in 4 horses. In the 6 horses, elimination half-life of dyphylline was 1.9 to 2.9 hours, and clearance was 200 to 320 ml/hr/kg. Plasma concentrations (approx 50 micrograms/ml) were observed at 10 minutes after injection without adverse effects. Concentrations greater than 10 micrograms/ml were observed from time zero to about 1.5 hours after injection. Theophylline induced significant increases in heart rate, but dyphylline did not affect heart rate significantly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Five healthy adult dogs were given a single IV dose (40 mg/kg of body weight) of ticarcillin disodium. Serum concentrations were measured serially over a period of 12 hours. Five days later, the drug was administered IM to the dogs at the same dose rate, and serum concentrations were measured serially for 12 hours. The mean peak serum concentration after IM administration was 120.5 micrograms/ml at 1.5 hours. Pharmacokinetic values following IV administration were (i) elimination rate constant = 0.8/hour-1, (ii) half-life = 0.8 hour, (iii) serum clearance = 292 ml/hr/kg, and (iv) apparent volume of distribution = 347 ml/kg. Estimated values after IM administration were (i) elimination rate constant = 0.6/hour, (ii) half-life = 1.1 hours, (iii) serum clearance = 218 ml/hr/kg, and (iv) apparent volume of distribution = 345 ml/kg; only the elimination rate constants were significantly different between the 2 routes of administration.  相似文献   

5.
The pharmacokinetics and estimated bioavailability of amoxicillin were determined after IV, intragastric, and IM administration to healthy mares. After IV administration of sodium amoxicillin (10 mg/kg of body weight), the disposition of the drug was best described by a 2-compartment open model. A rapid distribution phase was followed by a rapid elimination phase, with a mean +/- SD half-life of 39.4 +/- 3.57 minutes. The mean volume of distribution was 325 +/- 68.2 ml/kg, and the mean body clearance was 5.68 +/- 0.80 ml/min.kg. It was concluded that frequent IV administration of sodium amoxicillin would be required to maintain therapeutic plasma concentrations of amoxicillin, and thus, the use of this dosage form should be limited to the initiation of treatment or to intensive care situations. After intragastric administration of amoxicillin trihydrate (20 mg/kg), 5% cherry-flavored suspension, the drug was rapidly, but incompletely, absorbed and rapidly eliminated (mean half-life of the decline phase of the plasma amoxicillin concentration-time curve, 51 minutes). The mean estimated bioavailability (fractional absorption) of the administered dose was 10.4%, and the mean peak plasma amoxicillin concentration was 2.73 micrograms/ml at 1.5 hours after dosing. In one horse with clinical signs of abdominal discomfort and diarrhea, the absorption of amoxicillin from the gastrointestinal tract was delayed and the fraction absorbed was increased. It was concluded that this oral dosage form could be recommended only for the treatment of infections caused by bacteria that are highly susceptible to amoxicillin, that frequent dosing would be necessary, and that absorption may be inconsistent in horses with gastrointestinal disease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Six healthy adult mares were each given an oral loading dose of ormetoprim(OMP)-sulfadimethoxine (SDM) at a dosage of 9.2 mg of OMP/kg and 45.8 mg of SDM/kg, followed by four maintenance doses of 4.6 mg of OMP/kg and 22.9 mg of SDM/kg, at 24 h intervals. Ormetoprim and SDM concentrations were measured in serum, synovial fluid, peritoneal fluid, cerebrospinal fluid, urine and endometrium. The highest mean serum OMP concentration was 0.92 micrograms/mL 0.5 h after the first dose; the highest mean SDM concentration was 80.9 micrograms/mL 8 h after the first dose. The highest mean synovial fluid concentrations were 0.14 microgram of OMP/mL and 28.5 micrograms of SDM/mL 12 h after the first dose. The highest mean peritoneal fluid concentrations were 0.19 micrograms of OMP/mL 6 h after the first dose and 25.5 micrograms of SDM/mL 8 h after the fifth dose. The highest mean endometrial concentrations were 0.56 micrograms of OMP/g and 28.5 micrograms of SDM/g 4 h after the fifth dose. The mean cerebrospinal fluid concentrations were 0.08 micrograms of OMP/mL and 2.1 micrograms of SDM/mL 5 h after the fifth dose. Mean trough urine drug concentrations were greater than or equal to 0.4 micrograms of OMP/mL and greater than or equal to 172 micrograms of SDM/mL. Two of the mares were each given a single intravenous (IV) injection of OMP and SDM at a dosage of 9.2 mg of OMP/kg and 45.8 mg of SDM/kg. Excitation and muscle fasciculations were observed in both mares after IV administration and all scheduled blood samples could be collected from only one of the two mares.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Oxytetracycline (OTC) concentration in plasma and tissues, plasma pharmacokinetics, depletion from tissue, and toxicity were studied in 30 healthy calves after IM administration of a long-acting OTC preparation (40 mg/kg of body weight) at double the label dosage (20 mg/kg). Plasma OTC concentration increased rapidly after drug administration, and by 2 hours, mean (+/- SD) values were 7.4 +/- 2.6 micrograms/ml, Peak plasma OTC concentration was 9.6 +/- 2.6 micrograms/ml, and the time to peak plasma concentration was 7.6 +/- 4.0 hours. Plasma OTC concentration decreased slowly for 168 hours (elimination phase) after drug administration, and the elimination half-life was 23.9 hours. Plasma OTC concentration exceeded 3.8 micrograms/ml at 48 hours after drug administration. From 168 to 240 hours after drug administration, plasma OTC concentration decreased at a slower rate than that seen during the elimination phase. This slower phase was termed the depletion phase, and the depletion half-life was 280.7 hours. Tissue OTC concentration was highest in kidneys and liver. Lung OTC concentration exceeded 4.4 micrograms/g of tissue and 2.0 micrograms/g of tissue at 12 and 48 hours after drug administration, respectively. The drug persisted the longest in kidneys and liver. At 42 days after drug administration, 0.1 micrograms of OTC/g of kidney was detected. At 49 days after drug administration, all OTC tissue concentrations were below the detectable limit. Reactions and toxicosis after drug administration were limited to an anaphylaxis-like reaction (n = 1) and injection site swellings (n = 2).  相似文献   

8.
The pharmacokinetics of caffeine were determined in 10 camels after an intravenous dose of 2.35 mg kg(-1). The data obtained (median and range) were as follows. The elimination half-life (t(1/2)) was 31.4 (21.2 to 58.9) hours, the steady state volume of distribution (V(SS)) was 0.62 (0.51 to 0.74) litre kg(-1)and the total body clearance (Cl(T)) was 14.7 (8.70 to 19.7) ml kg(-1)per hour. Renal clearance estimated in two camels was 0.62 and 0.34 ml kg(-1)per hour. In vitro plasma protein binding (mean +/-SEM, n = 10) to a concentration of 2 and 8 microg ml(-1)was 36.0 +/- 0.24 and 39.2 +/- 0.36 per cent respectively. Theophylline and theobromine were identified as caffeine metabolites in serum and urine. The terminal elimination half-life of the former, estimated in two camels, was 70. 4 and 124.4 hours. Caffeine could be detected in the urine for 14 days.  相似文献   

9.
Channel catfish ( n = 84) maintained at a water temperature of 27°C were used in a feeding study to determine the plasma to muscle concentration ratios of sulfadimethoxine (SDM) and 4-N-acetylsulfadimethoxine residues. Sulfadimethoxine medicated feed was provided free choice at 42 mg SDM/kg body weight once daily for 5 days and the plasma and muscle concentrations of SDM were determined at selected withdrawal times (6, 12, 24, 48, 72, and 96 hours) following the last dose. Considerable variation in total SDM tissue concentration among fish within a sampling period was observed. For fish ( n = 12) at six hours post-dose, total SDM concentrations ranged from 1.4–24.8 μg/mL and 0.6–12.6 μg/g, with mean total SDM concentrations of 9.1 μg/mL and 5.3 μg/g for plasma and muscle, respectively. However, a mean plasma:muscle concentration ratio of 1.8:1 ± 0.3:1 was obtained over all concentrations and sampling periods. The plasma:muscle 95% t distribution interval for individual fish was 1.2:1 to 2.4:1. A correlation coefficient of 0.967 was obtained for the relationship between plasma and muscle total SDM concentration among individual fish ( n = 25). Results of this study indicate that plasma total SDM concentration may be used to identify samples containing violative SDM muscle residue. No fish contained total SDM muscle residues greater than the FDA tolerance (0.1 μg/g) by 48 hours following the final dose.  相似文献   

10.
The pharmacokinetics of pipemidic acid after 2 single doses were studied in broiler chickens. Chickens were given single IV and oral doses of 10 and 30 mg of pipemidic acid/kg of body weight. Blood samples were collected over 8 hours after each dose administration. High-pressure liquid chromatography with UV detection was used to determine concentrations in plasma of pipemidic acid. The plasma concentration-time curves after IV administration followed 2-compartment characteristics, rapid initial distribution phase, and a terminal elimination phase. The pharmacokinetic variables differed significantly between single doses of 10 and 30 mg of pipemidic acid/kg. Mean disposition variables were a half-life at alpha phase of 0.06 hours or 0.33 hours, a half-life at beta phase of 1.18 hours or 1.72 hours, a volume of distribution in the central compartment of 0.12 L/kg or 0.31 L/kg, a volume of distribution during the elimination beta phase of 1.64 L/kg or 1.05 L/kg, and a total plasma clearance of 0.97 L/h.kg or 0.41 L/h.kg, for the 10 or 30 mg/kg dose, respectively. After oral administration, the pipemidic acid plasma profile could be adequately described by a 1-compartment model. After the single oral doses of 10 and 30 mg of pipemidic acid/kg, pipemidic acid was absorbed rapidly (time to maximal concentration of 0.31 hours or 0.71 hours) and eliminated with a mean half-life of 0.86 hours or 0.61 hours, respectively. The bioavailability was 39% at 10 mg of pipemidic acid/kg and 61% at 30 mg of pipemidic acid/kg.  相似文献   

11.
The pharmacokinetics and bioavailability of enrofloxacin were determined after IV and IM administration of 5 mg/kg of body weight to 6 healthy adult rabbits. Using nonlinear least-squares regression methods, data obtained were best described by a 2-compartment open model. After IV administration, a rapid distribution phase was followed by a slower elimination phase, with a half-life of 131.5 +/- 17.6 minutes. The mean body clearance rate was 22.8 +/- 6.8 ml/min/kg, and the mean volume of distribution was 3.4 +/- 0.9 L/kg. This large volume of distribution and the K12/K21 ratio close to 1, indicated that enrofloxacin was widely distributed in the body, but not retained in tissues. After a brief lag period (6.2 +/- 2.86 min), IM absorption was rapid (4.1 +/- 1.3 min) and almost complete. The mean extent of IM absorption was 92 +/- 11%, and maximal plasma concentration of 3.04 +/- 0.34 micrograms/ml was detected approximately 10 minutes after administration.  相似文献   

12.
Serum concentrations of metronidazole were determined in 6 healthy adult mares after a single IV injection of metronidazole (15 mg/kg of body weight). The mean elimination rate (K) was 0.23 h-1, and the mean elimination half-life (t1/2) was 3.1 hours. The apparent volume of distribution at steady state was 0.69 L/kg, and the clearance was 168 ml/h/kg. Each mare was then given a loading dose (15 mg/kg) of metronidazole at time 0, followed by 4 maintenance doses (7.5 mg/kg, q 6 h) by nasogastric tube. Metronidazole concentrations were measured in serial samples of serum, synovia, peritoneal fluid, and urine. Metronidazole concentrations in CSF and endometrial tissues were measured after the fourth maintenance dose. The highest mean concentration in serum was 13.9 +/- 2.18 micrograms/ml at 40 minutes after the loading dose (time 0). The highest mean synovial and peritoneal fluid concentrations were 8.9 +/- 1.31 micrograms/ml and 12.8 +/- 3.21 micrograms/ml, respectively, 2 hours after the loading dose. The lowest mean trough concentration in urine was 32 micrograms/ml. Mean concentration of metronidazole in CSF was 4.3 +/- 2.51 micrograms/ml and the mean concentration in endometrial tissues was 0.9 +/- 0.48 micrograms/g at 3 hours after the fourth maintenance dose. Two mares hospitalized for treatment of bacterial pleuropneumonia were given metronidazole (15.0 mg/kg, PO, initially then 7.5 mg/kg, PO, q 6 h), while concurrently receiving gentamicin, potassium penicillin, and flunixin meglumine IV. Metronidazole pharmacokinetics and serum concentrations in the sick mares were similar to those obtained in the healthy mares.  相似文献   

13.
OBJECTIVE: To determine the pharmacokinetics of enrofloxacin administered IV and orally to foals. ANIMALS: 5 clinically normal foals. PROCEDURE: A 2-dose cross-over trial with IV and oral administration was performed. Enrofloxacin was administered once IV (5 mg/kg of body weight) to 1-week-old foals, followed by 1 oral administration (10 mg/kg) after a 7-day washout period. Blood samples were collected for 48 hours after the single dose IV and oral administrations and analyzed for plasma enrofloxacin and ciprofloxacin concentrations by use of high-performance liquid chromatography. RESULTS: For IV administration, mean +/- SD total area under the curve (AUC0-infinity) was 48.54 +/- 10.46 microg x h/ml, clearance was 103.72 +/- 0.06 ml/kg/h, half-life (t1/2beta) was 17.10 +/- 0.09 hours, and apparent volume of distribution was 2.49 +/- 0.43 L/kg. For oral administration, AUC0-infinity was 58.47 +/- 16.37 microg x h/ml, t1/2beta was 18.39 +/- 0.06 hours, maximum concentration (Cmax) was 2.12 +/- 00.51 microg/ml, time to Cmax was 2.20 +/- 2.17 hours, mean absorption time was 2.09 +/- 0.51 hours, and bioavailability was 42 +/- 0.42%. CONCLUSIONS AND CLINICAL RELEVANCE: Compared with adult horses given 5 mg of enrofloxacin/kg IV, foals have higher AUC0-infinity, longer t1/2beta, and lower clearance. Concentration of ciprofloxacin was negligible. Using a target Cmax to minimum inhibitory concentration ratio of 1:8 to 1:10, computer modeling suggests that 2.5 to 10 mg of enrofloxacin/kg administered every 24 hours would be effective in foals, depending on minimum inhibitory concentration of the pathogen.  相似文献   

14.
Six healthy adult mares were each given a single IV injection of trimethoprim (TMP)-sulfamethoxazole (SMZ) at a dosage of 2.5 mg of TMP/kg of body weight and 12.5 mg of SMZ/kg. Serum concentrations of each drug were measured serially over a 24-hour period. For TMP, the mean overall elimination rate constant (K) was 0.43/hr and the elimination half-life (t1/2) was 1.9 hours. The apparent volume of distribution (at steady state) was 1.62 L/kg and TMP clearance was 886 ml/hr/kg. For SMZ, K was 0.22/hr and t1/2 was 3.53 hours. The apparent volume of distribution at steady state was 0.33 L/kg and SMZ clearance was 78.2 ml/hr/kg. Each mare was then given 5 consecutive oral doses of TMP-SMZ at a rate of 2.5 mg of TMP/kg and 12.5 mg of SMZ/kg at 12-hour intervals. Trimethoprim and SMZ concentrations were measured in serum, synovial fluid, peritoneal fluid, CSF, urine, and endometrium. Although both mean TMP and SMZ serum concentrations were higher after the 5th dose than after the 1st dose, only the mean TMP concentration was significantly (P less than 0.05) different. After the 5th oral dose, concentrations of TMP and SMZ attained in body fluids (except CSF) and endometrial tissue were equal to or exceeded reported minimum inhibitory concentrations for Corynebacterium pseudotuberculosis, Staphylococcus sp, Streptococcus zooepidemicus, and several obligate anaerobes. Absorption of both drugs was variable after oral administration.  相似文献   

15.
OBJECTIVE: To evaluate disposition of fentanyl in goats after IV and transdermal administration. ANIMALS: 8 healthy 2-year-old goats weighing 31.8 to 53.6 kg (mean+/-SD, 40.4+/-7.5 kg). PROCEDURE: Each goat was given 2 treatments consisting of fentanyl administered IV (2.5 microg/kg of body weight) and via a transdermal patch (50 microg/h). There was a 2-month interval between treatments. Blood samples were collected at specified times and analyzed in duplicate to determine plasma fentanyl concentrations. Pharmacokinetic values were calculated, using a computerized modeling program. RESULTS: Administration of fentanyl was tolerated by all goats. Intravenous administration of fentanyl resulted in a transitory increase in rectal temperature that was not clinically important. Terminal elimination half-life after IV administration was 1.20+/-0.78 h, volume of distribution at steady state was 1.51+/-0.39 L/kg, and systemic clearance was 2.09+/-0.62 L/kg/h. Transdermal administration of fentanyl resulted in variable plasma concentrations, with peak plasma concentrations ranging from 1.12 to 16.69 ng/ml (mean+/-SD, 6.99+/-6.03 ng/ml) and time to peak concentration ranging from 8 to 18 hours (mean+/-SD, 13+/-4.5 hours). After removal of the transdermal patch, mean+/-SD terminal elimination half-life was 5.34+/-5.34 hours. CONCLUSIONS AND CLINICAL RELEVANCE: Intravenous administration of fentanyl (2.5 microg/kg) in goats results in a relatively short half-life that will limit its use for management of pain. Transdermal administration of fentanyl (50 microg/h) in goats results in variable plasma concentrations that may exceed those anticipated on the basis of a theoretical delivery rate, but stable plasma concentrations of fentanyl may not be achieved.  相似文献   

16.
Single-dose pharmacokinetic variables of pyrimethamine were studied in horses. Pyrimethamine (1 mg/kg of body weight) was administered IV and orally to 6 adult horses, and plasma samples were obtained at frequent intervals thereafter. Plasma pyrimethamine concentration was assayed by gas chromatography, and concentration-time data were analyzed, using a pharmacokinetic computer program. The IV and oral administration data were best described by 3-compartment and 1-compartment models, respectively. The median volume of distribution at steady state after IV administration was 1,521 ml/kg and the median elimination half-time was 12.06 hours. Mean plasma concentration after oral administration fluctuated between a maximal concentration of 0.18 microgram/ml and 0.09 microgram/ml (24 hours after dosing). Bioavailability after oral administration was 56%.  相似文献   

17.
Pharmacokinetics and bioavailability of cephalothin in horse mares   总被引:1,自引:0,他引:1  
The pharmacokinetics and bioavailability of cephalothin given to 6 horse mares at a dosage level of 11 mg/kg of body weight IV or IM were investigated. The disposition of cephalothin given IV was characterized by a rapid disposition phase with a mean half-life of 2.89 minutes and a subsequent slower elimination phase with a mean half-life of only 14.7 minutes. The mean residence time of cephalothin was 10.6 +/- 2.11 minutes. The total plasma clearance of cephalothin averaged 13.6 ml/min/kg and was caused by metabolism and renal elimination. Renal clearance of cephalothin averaged 1.32 ml/min/kg and accounted for elimination of about 10.1% of the administered dose. The volume of distribution at steady state averaged 151 mg/kg. Plasma protein binding of cephalothin at a concentration of 10 micrograms/ml averaged 17.9 +/- 2.5%. Cephalothin was rapidly metabolized to desacetylcephalothin. Maximum plasma desacetylcephalothin concentrations were observed in the blood samples collected 5 minutes after IV doses and averaged 22.9 micrograms/ml. The apparent half-life of desacetylcephalothin in plasma was 41.6 minutes and its renal clearance averaged 4.49 +/- 2.43 ml/min/kg. An average of 33.9% of the dose was recovered in the urine as desacetylcephalothin. The maximum plasma cephalothin concentration after IM administration was 11.3 +/- 3.71 micrograms/ml. The terminal half-life was 47.0 minutes and was longer than the half-life after IV administration. The bioavailability of cephalothin given IM ranged from 38.3% to 93.1% and averaged 65.0 +/- 20.5%.  相似文献   

18.
OBJECTIVE: To determine the pharmacokinetics of acetazolamide administered IV and orally to horses. ANIMALS: 6 clinically normal adult horses. PROCEDURE: Horses received 2 doses of acetazolamide (4 mg/kg of body weight, IV; 8 mg/kg, PO), and blood samples were collected at regular intervals before and after administration. Samples were assayed for acetazolamide concentration by high-performance liquid chromatography, and concentration-time data were analyzed. RESULTS: After IV administration of acetazolamide, data analysis revealed a median mean residence time of 1.71 +/- 0.90 hours and median total body clearance of 263 +/- 38 ml/kg/h. Median steady-state volume of distribution was 433 +/- 218 ml/kg. After oral administration, mean peak plasma concentration was 1.90 +/- 1.09 microg/ml. Mean time to peak plasma concentration was 1.61 +/- 1.24 hours. Median oral bioavailability was 25 +/- 6%. CONCLUSIONS AND CLINICAL RELEVANCE: Oral pharmacokinetic disposition of acetazolamide in horses was characterized by rapid absorption, low bioavailability, and slower elimination than observed initially after IV administration. Pharmacokinetic data generated by this study should facilitate estimation of appropriate dosages for acetazolamide use in horses with hyperkalemic periodic paralysis.  相似文献   

19.
The disposition of sulphadimidine (SDM) and of its N4-acetyl (N4-SDM) and two hydroxy metabolites, 6-hydroxymethyl-(SCH2OH) and 5-hydroxyasulphadimidine (SOH), was studied in plasma and milk of dairy cows following intramuscular or intravenous administration of sulphadimididine-33.3% at doses of 10, 45, 50, and 100 mg/kg. The main metabolite in plasma as well as in milk was SCH2OH. The metabolite percentages, the final plasma elimination half-lives, and the time of peak SDM concentrations in milk are presented for different dosages. The concentrations of SDM and its metabolites in milk ran parallel to those in plasma beyond 4 hours p.i. The metabolite concentrations in plasma and milk were lower than those of the parent SDM. Sulphate and glucuronide metabolites could not be detected in milk. At high doses (45 mg/kg or more) and SDM plasma concentrations exceeding 20 micrograms/ml, a capacity limited metabolism of SDM to SCH2OH was noticed, viz. a steady state concentration of SCH2OH and a biphasic elimination pattern for SDM and SCH2OH in plasma and milk. The mean ultrafiltrate ratios of the milk to plasma concentrations with respect to SDM, SCH2OH, SOH, and N4-SDM were: 0.69, 0.22, 020, and 0.63, respectively. The total amount of SDM and its metabolites recovered from the milk after milking twice daily over the whole experimental time was less than 2% of the applied dose. A bioassay method allowed of detecting qualitatively SDM concentrations exceeding 0.2 micrograms/ml in plasma or milk. Withholding times for edible tissues and milk are suggested.  相似文献   

20.
The pharmacokinetics and bioavailability of probenecid given IV and orally at the dosage level of 10 mg/kg of body weight to mares were investigated. Probenecid given IV was characterized by a rapid disposition phase with a mean half-life of 14.0 minutes and a subsequent slower elimination phase with a mean half-life of 87.8 minutes in 5 of 6 mares. In the remaining mare, a rapid disposition phase was not observed, and the half-life of the elimination phase was slower (172 minutes). The mean residence time of probenecid averaged 116 minutes for all 6 mares and 89.2 minutes for the 5 mares with biphasic disposition. The total plasma clearance of probenecid averaged 1.18 +/- 0.49 ml/min/kg, whereas renal clearance accounted for 42.6 +/- 9.3% of the total clearance. The steady-state volume of distribution of probenecid averaged 116 +/- 28.2 ml/kg. Plasma protein binding of probenecid was extensive, with 99.9% of the drug bound at plasma probenecid concentrations of 10 micrograms/ml. The maximum plasma probenecid concentration after 10 mg/kg orally averaged nearly 30 micrograms/ml. The half-life of probenecid after oral administration was approximately 120 minutes. Oral bioavailability was good with greater than 90% of the dose absorbed. The effect of probenecid on tubular secretion of organic anions was evaluated by determining the pharmacokinetics of IV cefazolin (11 mg/kg) administered alone and 15 minutes after probenecid (10 mg/kg orally). Treatment with probenecid did not affect pharmacokinetic values of cefazolin. This failure of probenecid to alter the pharmacokinetics of cefazolin may be caused by insufficient plasma probenecid concentrations after the oral dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号