首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A global array of 20 radio observatories was used to measure the three-dimensional position and velocity of the two meteorological balloons that were injected into the equatorial region of the Venus atmosphere near Venus midnight by the VEGA spacecraft on 11 and 15 June 1985. Initial analysis of only radial velocities indicates that each balloon was blown westward about 11,500 kilometers (8,000 kilometers on the night side) by zonal winds with a mean speed of about 70 meters per second. Excursions of the data from a model of constant zonal velocity were generally less than 3 meters per second; however, a much larger variation was evident near the end of the flight of the second balloon. Consistent systematic trends in the residuals for both balloons indicate the possibility of a solar-fixed atmospheric feature. Rapid variations in balloon velocity were often detected within a single transmission (330 seconds); however, they may represent not only atmospheric motions but also self-induced aerodynamic motions of the balloon.  相似文献   

2.
Cratering flow calculations for a series of oblique to normal (10 degrees to 90 degrees ) impacts of silicate projectiles onto a silicate halfspace were carried out to determine whether or not the gas produced upon shock-vaporizing both projectile and target material would form a downstream jet that could entrain and propel SNC meteorites from the Martian surface. The difficult constraints that the impact origin hypothesis for SNC meteorites has to satisfy are that these meteorites are lightly to moderately shocked and yet have been accelerated to speeds in excess of the Martian escape velocity (more than 5 kilometers per second). Two-dimensional finite difference calculations were performed that show that at highly probable impact velocities (7.5 kilometers per second), vapor plume jets are produced at oblique impact angles of 25 degrees to 60 degrees and have speeds as great as 20 kilometers per second. These plumes flow nearly parallel to the planetary surface. It is shown that upon impact of projectiles having radii of 0.1 to 1 kilometer, the resulting vapor jets have densities of 0.1 to 1 gram per cubic centimeter. These jets can entrain Martian surface rocks and accelerate them to velocities greater than 5 kilometers per second. This mechanism may launch SNC meteorites to earth.  相似文献   

3.
The calculated energy efficiency of mass ejection for iron and anorthosite objects striking an anorthosite planet at speeds of 5 to 45 kilometers per second decreases with increasing impact velocity at low escape velocities. At escape velocities of >10(5) and >2 x 10(4) centimeters per second, respectively, the slower impactors produce relatively less ejecta for a given impact energy. The impact velocities at which ejecta losses equal meteorite mass gains are found to be approximately 20, 35, and 45 kilometers per second for anorthosite objects and approximately 25, 35, and 40 kilometers per second for iron objects striking anorthosite surfaces for the gravity fields of the moon, Mercury, and Mars.  相似文献   

4.
Lunar seismic data from artificial impacts recorded at three Apollo seismometers are interpreted to determine the structure of the moon's interior to a depth of about 100 kilomneters. In the Fra Mauro region of Oceanus Procellarum, the moon has a layered crust 65 kilometers thick. The seismic velocities in the upper 25 kilometers are consistent with those in lunar basalts. Between 25 and 65 kilometers, the nearly constant velocity (6.8 kilometers per second) corresponds to velocities in gabbroic and anorthositic rocks. The apparent velocity is high (about 9 kilometers per second) in the lunar mantle immediately below the crust.  相似文献   

5.
Large earthquakes produce crustal deformation that can be quantified by geodetic measurements, allowing for the determination of the slip distribution on the fault. We used data from Global Positioning System (GPS) networks in Central Chile to infer the static deformation and the kinematics of the 2010 moment magnitude (M(w)) 8.8 Maule megathrust earthquake. From elastic modeling, we found a total rupture length of ~500 kilometers where slip (up to 15 meters) concentrated on two main asperities situated on both sides of the epicenter. We found that rupture reached shallow depths, probably extending up to the trench. Resolvable afterslip occurred in regions of low coseismic slip. The low-frequency hypocenter is relocated 40 kilometers southwest of initial estimates. Rupture propagated bilaterally at about 3.1 kilometers per second, with possible but not fully resolved velocity variations.  相似文献   

6.
Melt produced by friction during earthquakes may act either as a coseismic fault lubricant or as a viscous brake. Here we estimate the dynamic shear resistance (tau(f)) in the presence of friction-induced melts from both exhumed faults and high-velocity (1.28 meters per second) frictional experiments. Exhumed faults within granitoids (tonalites) indicate low tau(f) at 10 kilometers in depth. Friction experiments on tonalite samples show that tau(f) depends weakly on normal stress. Extrapolation of experimental data yields tau(f) values consistent with the field estimates and well below the Byerlee strength. We conclude that friction-induced melts can lubricate faults at intermediate crustal depths.  相似文献   

7.
Earlier observations of a seismic waveguide in the northwestern Pacific with a velocity of 8.3 kilometers per second to distances of approximately 30 degrees are complemented by suggestions of a possible waveguide with a velocity of 7.8 kilometers per second to distances well in excess of 30 degrees .  相似文献   

8.
High-resolution spectra of nearby stars show absorption lines due to material in the local interstellar cloud. This cloud is deduced to be moving at 26 kilometers per second with respect to the sun, and in the same direction as the "interstellar wind" flowing through the solar system. Measurements by the Ulysses spacecraft show that neutral helium is drifting through the solar system at the same velocity, but neutral hydrogen appears to be moving at only 20 kilometers per second, a result confirmed by new measurements of the hydrogen emission line taken by the High-Resolution Spectrograph on the Hubble Space Telescope. These results indicate that neutral hydrogen atoms from the local interstellar cloud are preferentially decelerated at the heliospheric interface, most likely by charge-exchange with interstellar protons, while neutral helium is unaffected by the plasma. The magnitude of the observed deceleration implies an interstellar plasma density of 0.06 to 0.10 per cubic centimeter, which in turn implies that the heliospheric shock should be less than 100 astronomical units from the sun.  相似文献   

9.
Lang KR 《Science (New York, N.Y.)》1969,166(3911):1401-1403
Time fluctuations in the intensity of pulsed radiation from CP 0834, CP 1133, AP 1237, and CP 1919 have been investigated. Power spectra, modulation indices, frequency distributions, and decorrelation frequencies are consistent with scintillation theory. If it is assumed that these scintillations are due to irregularities in the interstellar medium that travel at a velocity of 20 kilometers per second, the irregularities have a scale size on the order of 10(4) kilometers and a distance from the earth of approximately 70 parsecs. These interstellar scintillations would not have been observed if the apparent angular diameters of the pulsars were larger than 0.3 X 10(-5) second of arc, and they would cause even a point radio source to have an apparent angular diameter of approximately 10(-3) second of arc at 318 megahertz.  相似文献   

10.
Unusually long reverberations were recorded from two lunar impacts by a seismic station installed on the lunar surface by the Apollo 12 astronauts. Seismic data from these impacts suggest that the lunar mare in the region of the Apollo 12 landing site consists of material with very low seismic velocities near the surface, with velocity increasing with depth to 5 to 6 kilometers per second (for compressional waves) at a depth of 20 kilometers. Absorption of seismic waves in this structure is extremely low relative to typical continental crustal materials on earth. It is unlikely that a major boundary similar to the crustmantle interface on earth exists in the outer 20 kilometers of the moon. A combination of dispersion and scattering of surface waves probably explains the lunar seismic reverberation. Scattering of these waves implies the presence of heterogeneity within the outer zone of the mare on a scale of from several hundred meters (or less) to several kilometers. Seismic signals from 160 events of natural origin have been recorded during the first 7 months of operation of the Apollo 12 seismic station. At least 26 of the natural events are small moonquakes. Many of the natural events are thought to be meteoroid impacts.  相似文献   

11.
Coronal magnetic fields are dynamic, and field lines may misalign, reassemble, and release energy by means of magnetic reconnection. Giant releases may generate solar flares and coronal mass ejections and, on a smaller scale, produce x-ray jets. Hinode observations of polar coronal holes reveal that x-ray jets have two distinct velocities: one near the Alfvén speed ( approximately 800 kilometers per second) and another near the sound speed (200 kilometers per second). Many more jets were seen than have been reported previously; we detected an average of 10 events per hour up to these speeds, whereas previous observations documented only a handful per day with lower average speeds of 200 kilometers per second. The x-ray jets are about 2 x 10(3) to 2 x 10(4) kilometers wide and 1 x 10(5) kilometers long and last from 100 to 2500 seconds. The large number of events, coupled with the high velocities of the apparent outflows, indicates that the jets may contribute to the high-speed solar wind.  相似文献   

12.
The age of the universe based on abundances of isotopes is in the range 10 billion to 15 billion years. This is consistent with the age range 12 billion to 20 billion years calculated from the evolution of the oldest galactic stars. A third estimate of the age of the universe is based on the Hubble relation between the velocities of galaxies and their distances from us, where the inverse of the Hubble parameter H is a measure of the age of a uniformly expanding universe. Evidence that has been accumulating over the past few years indicates that the expansion of the universe may exhibit a rather large local perturbation due to the gravitational attraction of the Virgo supercluster. Different types of observations still produce conflicting evidence about the velocity with which the Local Group of galaxies (of which our Milky Way system is a member) is falling into the Virgo cluster. The results to date indicate that this velocity lies somewhere in the range 0 to 500 kilometers per second. The resulting ambiguity in the flow pattern for relatively nearby galaxies makes values of H derived from galaxies with radial velocities less than 2000 kilometers per second particularly uncertain, and this restricts determinations of H to distant galaxies, for which distances are particularly uncertain. The best that can be said at present is that H(-1) yields a maximum time scale in the range 10 billion to 20 billion years.  相似文献   

13.
To determine the wind directions and speeds on Venus, as each Pioneer probe fell to the surface we tracked its motion in three dimensions using a combination of Doppler and long-baseline radio interferometric methods. Preliminary results from this tracking, coupled with results from test observations of other spacecraft, enable us to estimate the uncertainties of our eventual determinations of the velocity vectors of the probes with respect to Venus. For altitudes below about 65 kilometers and with time-averaging over 100-second intervals, all three components of the velocity should have errors of the order of 0.3 meter per second or less.  相似文献   

14.
Triton's plumes are narrow columns 10 kilometers in height, with tails extending horizontally for distances over 100 kilometers. This structure suggests that the plumes are an atmospheric rather than a surface phenomenon. The closest terrestrial analogs may be dust devils, which are atmospheric vortices originating in the unstable layer close to the ground. Since Triton has such a low surface pressure, extremely unstable layers could develop during the day. Patches of unfrosted ground near the subsolar point could act as sites for dust devil formation because they heat up relative to the surrounding nitrogen frost. The resulting convection would warm the atmosphere to temperatures of 48 kelvin or higher, as observed by the Voyager radio science team. Assuming that velocity scales as the square root of temperature difference times the height of the mixed layer, a velocity of 20 meters per second is derived for the strongest dust devils on Triton. Winds of this speed could raise particles provided they are a factor of 103 to 104 less cohesive than those on Earth.  相似文献   

15.
The International Cometary Explorer spacecraft passed through the coma of comet Giacobini-Zinner about 7800 kilometers antisunward of the nucleus on 11 September 1985. The ion composition instrument was sensitive to ambient ions with mass-to-charge ratios in the ranges 1.4 to 3 atomic mass units per electron charge (amu e(-1)) and 14 to 33 amu e(-1). Initial interpretation of the measurements indicates the presence of H(2)O(+), H(3)O(+), probably CO(+) and HCO(+), and ions in the mass range 23 to 24; possible candidates are Na(+) and Mg(+). In addition to these heavy ions, measured over the velocity range 80 to 223 kilometers per second, the instrument measured He(2+) of solar wind origin over the range 237 to 463 kilometers per second. The heavy ions have a velocity distribution which indicates that they have been picked up by the motional electric field, whereas the light ions are steadily decelerated as the comet tail axis is approached. These results are in agreement with the picture of a comet primarily consisting of water ice, together with other material, that sublimes, streams away from the nucleus, becomes ionized, and interacts with the solar wind. K. W. Ogilvie, NASA/Goddard Space Flight Center, Code 692, Greenbelt, MD 20771.  相似文献   

16.
Small-magnitude earthquakes began beneath Mount St. Helens 40 days before the eruption of 20 March 1982. Unlike earlier preeruption seismicity for this volcano, which had been limited to shallow events (less than 3 kilometers), many of these earthquakes were deep (between 5 and 11 kilometers). The location of these preeruptive events at such depth indicates that a larger volume of the volcanic system was affected prior to the 20 March eruption than prior to any of the earlier dome-building eruptions. The depth-time relation between the deep earthquakes and the explosive onset of the eruption is compatible with the upward migration of magmatic gas released from a separate deep reservoir.  相似文献   

17.
By using seismic records of the 2004 magnitude 6.0 Parkfield earthquake, we identified a burst of high-frequency seismic radiation that occurred about 13 kilometers northwest of the hypocenter and 5 seconds after rupture initiation. We imaged this event in three dimensions by using a waveform back-projection method, as well as by timing distinct arrivals visible on many of the seismograms. The high-frequency event is located near the south edge of a large slip patch seen in most seismic and geodetic inversions, indicating that slip may have grown abruptly at this point. The time history obtained from full-waveform back projection suggests a rupture velocity of 2.5 kilometers per second. Energy estimates for the subevent, together with long-period slip inversions, indicate a lower average stress drop for the northern part of the Parkfield earthquake compared with that for the region near its hypocenter, which is in agreement with stress-drop estimates obtained from small-magnitude aftershocks.  相似文献   

18.
Li YG  Leary P  Aki K  Malin P 《Science (New York, N.Y.)》1990,249(4970):763-766
Three-component borehole seismic profiling of the recently active Oroville, California, normal fault and microearthquake event recording with a near-fault three-component borehole seismometer on the San Andreas fault at Parkfield, California, have shown numerous instances of pronounced dispersive wave trains following the shear wave arrivals. These wave trains are interpreted as fault zone-trapped seismic modes. Parkfield earthquakes exciting trapped modes have been located as deep as 10 kilometers, as shallow as 4 kilometers, and extend 12 kilometers along the fault on either side of the recording station. Selected Oroville and Parkfield wave forms are modeled as the fundamental and first higher trapped SH modes of a narrow low-velocity layer at the fault. Modeling results suggest that the Oroville fault zone is 18 meters wide at depth and has a shear wave velocity of 1 kilometer per second, whereas at Parkfield, the fault gouge is 100 to 150 meters wide and has a shear wave velocity of 1.1 to 1.8 kilometers per second. These low-velocity layers are probably the rupture planes on which earthquakes occur.  相似文献   

19.
Modern distance determinations to galaxies were reviewed and placed on a uniform and self-consistent scale. Based on eight separate but not entirely independent techniques, the distance to the Virgo cluster was found to be 15.8 +/- 1.1 megaparsec. Twelve different determinations yield a Coma/Virgo distance ratio of 5.52 +/- 0.13 and hence a Coma distance of 87 +/- 6 megaparsec. With a cosmological redshift of 7210 kilometers per second, this gives a Hubble parameter H(0) (local) of 83 +/- 6 kilometers per second per megaparsec. From the velocity-distance relation of rich clusters of galaxies, the ratio of the value of H(0) (global) to the value of H(0) (local) was determined to be 0.92 +/- 0.08. In other words, the cluster data do not show a statistically significant difference between the local and global values of the Hubble parameter. If one nevertheless adopts this relation between H(0) (global) and H(0) (local), then the value of H(0) (global) is 76 +/- 9 kilometers per second per megaparsec. This observed value differs at the approximately 3sigma level (where sigma is the standard deviation of the distribution) from values in the range 36 less, similar H(0) less, similar50 kilometers per second per megaparsec, which are derived from stellar evolutionary theory in conjunction with standard cosmological models with a density parameter (Omega) that is equal to 1 and a cosmological constant (lambda) that is equal to 0.  相似文献   

20.
Without a source of new gas, our Galaxy would exhaust its supply of gas through the formation of stars. Ionized gas clouds observed at high velocity may be a reservoir of such gas, but their distances are key for placing them in the galactic halo and unraveling their role. We have used the Hubble Space Telescope to blindly search for ionized high-velocity clouds (iHVCs) in the foreground of galactic stars. We show that iHVCs with 90 ≤ |v(LSR)| ? 170 kilometers per second (where v(LSR) is the velocity in the local standard of rest frame) are within one galactic radius of the Sun and have enough mass to maintain star formation, whereas iHVCs with |v(LSR)| ? 170 kilometers per second are at larger distances. These may be the next wave of infalling material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号