首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
A tremendous range of physical science problems and techniques, from all branches of engineering, are involved in bioengineering instrumentation. The examples I have cited typify the problems that arise, but the techniques we have used represent only an infinitesimal fraction of the resources that we must exploit. The main challenge to the bioengineer is that of defining the problem in terms of what is useful and economically justified. One must understand the possibilities of engineering development and the probability that an effort will reach any assignable goal within a given time. Only then is it possible to work out a practical solution to the instrumentation problem. It is very easy to become so absorbed in the engineering development that we lose sight of the final goal and the purpose of the development. It is also easy, in working out an experiment, to become obsessed with the need for a particular bit of data, or of too great a degree of precision, without considering that the cost of obtaining these data might not be justified by their value to the full development. Thus, the only principles that can be generally applied to a bioengineering problem are those which would apply to making any decision that leans heavily on judgment.  相似文献   

9.
10.
11.
12.
The progress of instrumentation and measurement science in the next decade will be marked by three major trends. First, as the average instrument achieves a rather considerable level of intelligence, "dumb" systems will become the exception, and we will eventually begin to become proficient in exploiting the resulting capabilities. Second, more sophisticated understanding of measurement science and of actual measurement needs will drive instrumentation design advances such as miniaturized sensors and yet more "hyphenated" instruments and "mapping" instruments. Third, the combination of sensor-based instrumentation and microminiaturization will make possible distributed measurement by allowing point-of-use measurements by nonexperts.  相似文献   

13.
14.
15.
16.
17.
虚拟仪器(Virtual Instrumentation,简称VI)是20世纪90年代以来随着计算机技术的进步而逐步发展起来的新仪器产品,是指具有虚拟仪器面板的个人计算机仪器。它可以广泛应用于农业工程领域,如农机产品的性能测试与故障诊断,农产品等级分选以及无损检测,农场的自动化监控与数据采集,种子、秧苗或细胞生物特性的研究等,都可以应用到虚拟仪器技术。1虚拟仪器的特点虚拟仪器是计算机技术在仪器仪表领域的应用所形成的一种新型的、富有生命力的仪器种类。与传统仪器相同,它包含数据采集、数据分析与处理、结果表达与输出三大功能块。它是具有虚拟…  相似文献   

18.
19.
网络化虚拟测试仪器的研究与开发   总被引:4,自引:0,他引:4  
开发了对真实测试设备进行访问和控制的网络虚拟仪器测试实验室的软件平台,实现了测试与信号分析功能的网络化以及硬件仪器的共享,并给出了系统的总体设计流程。网络测试系统采用B/S模式,网络虚拟仪器测试实验室则采用BSDA模式;基于多层结构进行了功能的划分与整合:使用Java编程实现了网络管理服务器程序,采用“并发接收,顺序执行”的服务策略进行实验室多用户并发访问协调管理;应用LabW indows/CVI开发了测试服务器程序,用于执行客户的测试和信号分析请求,并作为原虚拟测试与分析仪的网络化功能扩展部分;利用Java App let开发了运行于客户端的多个虚拟仪器;实现了Java与LabW indows/CVI的网络数据通信。在系统结构为服务器-3台客户机的环境下进行了试验,取得了良好的效果。系统运行正常,客户端与服务器能够协调、无差错地进行网络通信,用户可以根据自己的需要进行试验。  相似文献   

20.
虚拟仪器技术在现代农业生产中的应用   总被引:1,自引:2,他引:1  
吕太国 《安徽农业科学》2008,36(9):3920-3921
随着科学技术的发展,由于虚拟仪器具有传统仪器不可比拟的优点而在农业生产中得到广泛的应用。介绍了虚拟仪器的概念、特点、结构、软件开发平台以及在农业生产中的应用实例,对于提高农业生产效率具有一定的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号