首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radio occultation measurements at S band (2.293 gigahertz) of the ionosphere and upper neutral atmosphere of Saturn were obtained during the flyby of the Pioneer 11 Saturn spacecraft on 5 September 1979. Preliminary analysis of the occultation exit data taken at a latitude of 9.5 degrees S and a solar zenith angle of 90.6 degrees revealed the presence of a rather thin ionosphere, having a main peak electron density of about 9.4 x 10/(3) per cubic centimeter at an altitude of about 2800 above the level of a neutral number density of 10(19) per cubic centimeter and a lower peak of about 7 x 10(3) per cubic centimeter at 2200 kilometers. Data in the neutral atmosphere were obtained to a pressure level of about 120 millibars. The temperature structure derived from these data is consistent with the results of the Pioneer 11 Saturn infrared radiometer experiment (for a helium fraction of 15 percent) and with models derived from Earth-based observations for a helium fraction by number of about 4 to 10 percent. The helium fraction will be further defined by mutual iteration with the infrared radiometer team.  相似文献   

2.
The neutral mass spectrometer on board the Pioneer Venus multiprobe bus measured composition and structral parameters of the dayside Venus upper atmosphere on 9 December 1978. Carbon dioxide and helium number densities were 6 x 10(6) and 5 x 10(6) per cubic centimeter, respectively, at an altitude of 150 kilometers. The mixing ratios of both argon-36 and argon-40 were approximately 80 parts per million at an altitude of 135 kilometers. The exospheric temperature from 160 to 170 kilometers was 285 +/- 10 K. The helium homopause was found at an altitude of about 137 kilometers.  相似文献   

3.
Pioneer Venus in situ measurements made with the retarding potential analyzer reveal strong variations in the nightside ionospheric plasma density from location to location in some orbits and from orbit to orbit. The ionopause is evident at night as a relatively abrupt decrease in the thermal plasma concentration from a few hundred to ten or fewer ions per cubic centimeter. The nightside ion and electron temperatures above an altitude of 250 kilometers, within the ionosphere and away from the terminator, are comparable in magnitude and have a value at the ionopause of approximately 8000 K. The electron temperature increases from a few tens of thousands of degrees Kelvin just outside the ionopause to several hundreds of thoussands of degrees Kelvin further into the shocked solar wind. The coldest ion temperatures measured at an altitude of about 145 kilometers are 140 to 150 K and are still evidently above the neutral temperature. Preliminary day-and nightside model ion and electron temperature height profiles are compared with measured profiles. To raise the model ion temperature to the measured ion temperature on both day-and nightsides, it was necessary to include an ion energy source of the order of 4 x 10(-3) erg per square centimeter per second, presumably Joule heating. The heat flux through the electron gas from the solar wind into the neutral atmosphere averaged over day and night may be as large as 0.05 erg per square centimeter per second. Integrated over the planet surface, this heat flux represents one-tenth of the solar wind energy expended in drag on the sunward ionopause hemisphere.  相似文献   

4.
Normal atmosphere: large radical and formaldehyde concentrations predicted   总被引:3,自引:0,他引:3  
Levy H 《Science (New York, N.Y.)》1971,173(3992):141-143
A steady-state model of the normal (unpolluted) surface atmosphere predicts a daytime concentration of hydroxyl, hydroperoxyl, and methylperoxyl radicals approaching 5 x 10(8)molecules per cubic centimeter and a formaldehyde concentration of 5 x 10(10) molecules per cubic centimeter or 2 parts per billion. A radical chain reaction is proposed for the rapid removal of carbon monoxide, leading to a carbon monoxide lifetime as low as 0.2 year in the surface atmosphere.  相似文献   

5.
Model Jovian ionospheres are constructed for comparison with Pioneer 10 results. Electron density maxima are predicted at a level approximately 220 kilometers above an assumed reference height where the hydrogen density is 10(16) molecules per cubic centimeter. It may be possible to use observations of the electron density to locate the turbopause. Attention is drawn to a possible strong source of ionized sodium from lo which might lead to large electron densities at low altitudes.  相似文献   

6.
Thermal noise spectroscopy was used to measure the density and temperature of the main (cold) electron plasma population during 2 hours (1.5x10(5) kilometers perpendicular to the tail axis) around the point of closest approach of the International Cometary Explorer (ICE) to Comet Giacobini-Zinner. The time resolution was 18 seconds (370 kilometers) in the plasma tail and 54 seconds (1100 kilometers) elsewhere. Near the tail axis, the maximum plasma density was 670 per cubic centimeter and the temperature slightly above 1 electron volt. Away from the axis, the plasma density dropped to 100 per cubic centimeter (temperature, 2x 10(4) K) over 2000 kilometers, then decreased to 10 (1.5x 10(5)K) over 15,000 kilometers; outside that region (plasma tail), the density fluctuated between 10 and 30 per cubic centimeter and the temperature between 1x 10(5) and 4 x10(5) K. The relative density of the hot population rarely exceeded a few percent. The tail was highly asymmetrical and showed much structure. On the other antenna, shot noise was recorded from the plasma particle impacts on the spacecraft body. No evidence was found of grain impacts on the antennas or spacecraft in the plasma tail. This yields an upper limit for the dust flux or particle mass, indicating either fluxes or masses in the tail smaller than implied by the models or an anomalous grain structure. This seems to support earlier suggestions that these grains are featherlike. Outside the tail, and particularly near 10(5) kilometers from its axis, impulsive noises indicating plasma turbulence were observed.  相似文献   

7.
Voyager 1 radio occultation measurements of Titan's equatorial atmosphere successfully probed to the surface, which is provisionally placed at a radius of 2570 kilometers. Derived scale heights plus other experimental and theoretical results indicate that molecular nitrogen is the predominant atmospheric constituent. The surface pressure and temperature appear to be about 1.6 bars and 93 K, respectively. The main clouds are probably methane ice, although some condensation of nitrogen cannot be ruled out. Solar abundance arguments suggest and the measurements allow large quantities of surface methane near its triple-point temperature, so that the three phases of methane could play roles in the atmosphere and on the surface of Titan similar to those of water on Earth. Radio occultation measurements of Saturn's atmosphere near 75 degrees south latitude reached a maximum pressure of 1.4 bars, where the temperature is about 156 K. The minimum temperature is about 91 K near the 60-millibar pressure level. The measured part of the polar ionosphere of Saturn has a peak electron concentration of 2.3 x 10(4) per cubic centimeter at an altitude of 2500 kilometers above the 1-bar level in the atmosphere, and a plasma scale height at the top of the ionosphere of 560 kilometers. Attenuation of monochromatic radiation at a wavelength of 3.6 centimeters propagating obliquely through Saturn's rings is consistent with traditional values for the normal optical depth of the rings, but the near-forward scattering of this radiation by the rings indicates effective scattering particles with larger than expected diameters of 10, 8, and 2 meters in the A ring, the outer Cassini division, and the C ring, respectively. Preliminary analysis of the radio tracking data yields new values for the masses of Rhea and Titan of 4.4 +/- 0.3 x 10(-6) and 236.64 +/- 0.08 x 10(-6) times the mass of Saturn. Corresponding values for the mean densities of these objects are 1.33 +/- 0.10 and about 1.89 grams per cubic centimeter. The density of Rhea is consistent with a solar-composition mix of anhydrous rock and volatiles, while Titan is apparently enriched in silicates relative to the solar composition.  相似文献   

8.
Measurements of the changes in orbital period of the Pioneer Venus orbiter have yielded estimates of the density of the upper atmosphere of Venus at altitudes in the range from 150 to 200 kilometers. At the lower limit of this range, the density on the dayside of the terminator exhibits a temporal variation of amplitude near 4 x 10(-14) gram per cubic centimeter aboult a mean of approximately 1.4 x 10(-13) gram per cubic centimeter. The variation appears oscillatory, with a 4- to 5-day period, but barely one cycle was observed. The density on the nightside of the terminator, sampled inthe same 150-kilometer altitude range, fluctuates about a smaller mean of approximately 4 x 10(-14) gram per cubic centimeter. The density between the altitudes of 150 and 200 kilometers, sampled only on the dayside of the terminator, imply a scale height of between 15 and 20 kilometers. The interpretation of this estimate is uncertain, however, in view of the measurements at the different altitudes having been made at different times and, hence, at different values of solar phase.  相似文献   

9.
The preliminary analysis of data from the Pioneer 10 S-band radio occultation experinment has revealed the presence of an ionosphere on the Jovian satellite Io (JI) having an electron density peak of about 6 x 10(4) electrons per cubic centimeter at an altitude of approximately 60 to 140 kilometers. This suggests the presence of an atmosphere having a surface number density of about 10(10) to 10(12) per cubic centimeter, corresponding to an atmospheric surface pressure of between 10(-8) and 10(-10) bar, at or below the detection threshold of the Beta Scorpii stellar occultation. A measurement of the atmosphere of Jupiter was obtained down to the level of about 80 millibars, indicating a large temperature increase at about the 20 millibar level, which cannot be explained by the absorption of solar radiation by methane alone and can possibly be due to absorption by particulate matter.  相似文献   

10.
Kang WN  Kim HJ  Choi EM  Jung CU  Lee SI 《Science (New York, N.Y.)》2001,292(5521):1521-1523
We fabricated high-quality c axis-oriented epitaxial MgB2 thin films using a pulsed laser deposition technique. The thin films grown on (1 i 0 2) Al2O3 substrates have a transition temperature of 39 kelvin. The critical current density in zero field is approximately 6 x 10(6) amperes per cubic centimeter at 5 kelvin and approximately 3 x 10(5) amperes per cubic centimeter at 35 kelvin, which suggests that this compound has potential for electronic device applications, such as microwave devices and superconducting quantum interference devices. For the films deposited on Al2O3, x-ray diffraction patterns indicate a highly c axis-oriented crystal structure perpendicular to the substrate surface.  相似文献   

11.
Voyager 2 radio occultation measurements of Saturn's atmosphere probed to the 1.2-bar pressure level, where the temperature was 143 +/- 6 K and the lapse rate apparently equaled the dry adiabatic value of 0.85 K per kilometer. The tropopause at both mid-latitude occultation locations (36.5 degrees N and 31 degrees S) was at a pressure level of about 70 millibars and a temperature of approximately 82 K. The stratospheric structures were very similar with the temperature rising to about 140 K at the 1-millibar pressure level. The peak electron concentrations sensed were 1.7 x 10(4) and 0.64 x 10(4) per cubic centimeter in the predawn (31 degrees S) and late afternoon (36.5 degrees N) locations. The topside plasma scale heights were about 1000 kilometers for the late afternoon profile, and 260 kilometers for the lower portions and 1100 kilometers for the upper portions of the topside predawn ionosphere. Radio measurements of the masses of Tethys and Iapetus yield (7.55 +/- 0.90) x 10(20) and (18.8 +/- 1.2) x 10(20) kilograms respectively; the Tethys-Mimas resonance theory then provides a derived mass for Afimas of (0.455 +/- 0.054) x 10(20) kilograms. These values for Tethys and Mimas represent major increases from previously accepted ground-based values, and appear to reverse a suggested trend of increasing satellite density with orbital radius in the Saturnian system. Current results suggest the opposite trend, in which the intermediate-sized satellites of Saturn may represent several classes of objects that differ with respect to the relative amounts of water, ammonia, and methane ices incorporated at different temperatures during formation. The anomalously low density of lapetus might then be explained as resulting from a large hydrocarbon content, and its unusually dark surface markings as another manifestation of this same material.  相似文献   

12.
The spectrum of Mercury at the Fraunhofer sodium D lines shows strong emission features that are attributed to resonant scattering of sunlight from sodium vapor in the atmosphere of the planet. The total column abundance of sodium was estimated to be 8.1 x 10(11) atoms per square centimeter, which corresponds to a surface density at the subsolar point of about 1.5 x 10(5) atoms per cubic centimeter. The most abundant atmospheric species found by the Mariner 10 mission to Mercury was helium, with a surface density of 4.5 x 10(3) atoms per cubic centimeter. It now appears that sodium vapor is a major constituent of Mercury's atmosphere.  相似文献   

13.
It is argued that the single-layer ionosphere at 125 kilometers discovered in the Mariner IV occultation experiment is an Fl region coinciding with the ultraviolet photoionization peak. The CO(2) density there must be of the order of 10(11) molecules per cubic centimeter. Such a density is consistent with the properties of the lower atmosphere by Mariner IV anid the temperature model of Chamberlain and McElroy if the atmosphere is mainly CO(2) below 70 kilometers. The absence of an F2 region can be explained even if the density ratio of O to CO(2) is 100 at 230 kilometers on the basis of the rapid conversion of O(+) to O(2) by CO(2). Thus a model with an exospheric temperature of 400 degrees K, a modest degree of CO(2) dissociation, and diffusive separation above 70 kilometers is possible.  相似文献   

14.
The natural remanent magnetization (3.7 x 10(4) electromagnetic units per cubic centimeter) and the susceptibility per cubic centimeter (6.3 x 10(-13)) of an 18.5-gram breccia specimen were determined with instrumentation and techniques currently used in paleomagnetism. The relatively low magnetic stability of the rock in the earth's field and in alternating demagnetizing fields precludes considering it as a reliable carrier of paleomagnetism. A magnetic balance study yields an unusually high Curie temperature (750 degrees C) which is possibly diagnostic of metallic Fe containing less than 5 percent nickel. The estimated relative abundance of the iron in the sample is about 0.5 percent.  相似文献   

15.
Analysis of the Doppler tracking data near encounter yields a value for the ratio of the mass of the sun to that of Venus of 408,523.9 +/- 1.2, which is in good agreement with prior determinations based on data from Mariner 2 and Mariner 5. Preliminary analysis indicates that the magnitudes of the fractional differences in the principal moments of inertia of Venus are no larger than 10(-4), given that the effects of gravity-field harmonics higher than the second are negligible. Additional analysis is needed to determine the influence of the higher order harmonics on this bound. Four distinct temperature inversions exist at altitudes of 56, 58, 61, and 63 kilometers. The X-band signal was much more rapidly attenuated than the S-band signal and disappeared completely at 52-kilometer altitude. The nightside ionosphere consists of two layers having a peak density of 10(4) electrons per cubic centimeter at altitudes of 140 and 120 kilometers. The dayside ionosphere has a peak density of 3 X 10(5) electrons per cubic centimeter at an altitude of 145 kilometers. The electron number density observed at higher altitudes was ten times less than that observed by Mariner 5, and no strong evidence for a well-defined plasmapause was found.  相似文献   

16.
Fourteen profiles of electron density in the ionosphere of Venus were obtainecd by the dual-frequency radio occulation method with the Pioneer Venus orbiter between 5 and 30 December 1978. The solar zenith angles for these measurements were between about 85 degrees and 92 degrees , and the latitudes ranged from about 81 degrees to 88 degrees (ecliptic north). In addition to the expected decreasein peak electron density from about 1.5 x 10(3) to 0.5 x 10(3) per cubic centimeter with increasing solar zenith angle, a region of almost constant electron density above about 250 kilometers was observed. The ionopause height varies from about 300 to 700 kilometers and seems to be influenced by diurnal changes in solar wind conditions. The structures of the profiles are consistent with models in which O(2)(+) dominates near the ionization peak and is replaced by O(+) at higher altitudes.  相似文献   

17.
The Voyager 2 encounter with the Neptune system included radio science investigations of the masses and densities of Neptune and Triton, the low-order gravitational harmonics of Neptune, the vertical structures of the atmospheres and ionospheres of Neptune and Triton, the composition of the atmosphere of Neptune, and characteristics of ring material. Demanding experimental requirements were met successfully, and study of the large store of collected data has begun. The initial search of the data revealed no detectable effects of ring material with optical depth tau [unknown] 0.01. Preliminary representative results include the following: 1.0243 x 10(26) and 2.141 x 10(22) kilograms for the masses of Neptune and Triton; 1640 and 2054 kilograms per cubic meter for their respective densities; 1355 +/- 7 kilometers, provisionally, for the radius of Triton; and J(2) = 3411 +/- 10(x 10(-6)) and J(4) = -26(+12)(-20)(x10(-6)) for Neptune's gravity field (J>(2) and J(4) are harmonic coefficients of the gravity field). The equatorial and polar radii of Neptune are 24,764 +/- 20 and 24,340 +/- 30 kllometers, respectively, at the 10(5)-pascal (1 bar) pressure level. Neptune's atmosphere was probed to a pressure level of about 5 x 10(5) pascals, and effects of a methane cloud region and probable ammonia absorption below the cloud are evident in the data. Results for the mixing ratios of helium and ammonia are still being investigated; the methane abundance below the clouds is at least 1 percent by volume. Derived temperature-pressure profiles to 1.2 x 10(5) pascals and 78 kelvins (K) show a lapse rate corresponding to "frozen" equilibrium of the para- and ortho-hydrogen states. Neptune's ionosphere exhibits an extended topside at a temperature of 950 +/- 160 K if H(+) is the dominant ion, and narrow ionization layers of the type previously seen at the other three giant planets. Triton has a dense ionosphere with a peak electron concentration of 46 x 10(9) per cubic meter at an altitude of 340 kilometers measured during occultation egress. Its topside plasma temperature is about 80 +/- 16 K if N(2)(+) is the principal ion. The tenuous neutral atmosphere of Triton produced distinct signatures in the occultation data; however, the accuracy of the measurements is limited by uncertainties in the frequency of the spacecraft reference oscillator. Preliminary values for the surface pressure of 1.6 +/- 0.3 pascals and an equivalent isothermal temperature of 48 +/- 5 K are suggested, on the assumption that molecular nitrogen dominates the atmosphere. The radio data may be showing the effects of a thermal inversion near the surface; this and other evidence imply that the Triton atmosphere is controlled by vapor-pressure equilibrium with surface ices, at a temperature of 38 K and a methane mixing ratio of about 10(-4).  相似文献   

18.
X-ray emission from the Cygnus Loop was observed in the energy region around 0.2 to 1 kiloelectronvolt with a collector that focused x-rays along one dimension while scanning across the nebula. The total integrated intensity is 1.3x 10(-8) erg per square centimeter per second. The one-dimensional x-ray structure has the same angular size-about 3 degrees-as the outermost boundaries of the optical filaments. There is no increase in x-ray emission at the center of the nebula nor at the strong feature that is seen in certain radio maps. The x-ray spectrum is consistent with thermal radiation from a hot plasma at a temperature of about 4 x 10(6) degrees K with evidence for a line at 19 angstroms corresponding to the 2p-->1s transition of O VIII.  相似文献   

19.
Chain decomposition of ozone by hydroxyl and hydroperoxyl radicals has been observed. The rate constant at 3000 degrees K for OH + O(3)-->HO(2) + O(2) is 8 x 10(-14) cubic centimeters per second. The rate constant for HO(2) + O(3)--> OH + 2O(2), is 3 x 10(-15) cubic centimeters per second. These results have implications concerning stratospheric ozone.  相似文献   

20.
Amorphous ice prepared under a wide range of conditions has a density, determined from its buoyancy in liquid oxygen, of 0.94+/-0.02 gram per cubic centimeter, the same as that of ordinary hexagonal ice, with no indication of the glassy superdense ice (2.32 grams per cubic centimeter) reported recently. The diffuse reflectivity shows a small increase as the ice crystallizes at 153 degrees K. This increase is followed by a much larger increase (probably associated with crystal growth) as the sample warms, and the reflectivity reaches a maximum well below the melting temperature. Although the ice deposits appear translucent, the specular reflectivity is low, thus indicating a dull rather than a glassy surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号