首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to evaluate the potential role of gramineous weeds present near paddy fields as alternative hosts for the Fusarium graminearum species complex (FGSC) that causes fusarium head blight (FHB) in rice. A total of 142 weed samples were collected from 10 gramineous weed species near paddy fields from August to October 2018 in Jiangsu Province, China. Of the 145 isolates of seven Fusarium species isolated from the weed samples, F. asiaticum was the most abundant (86.9%), followed by F. fujikuroi (5.5%), F. proliferatum (2.8%), F. graminearum (2.1%), F. tricinctum (1.4%), F. acuminatum (0.7%), and F. sporotrichioides (0.7%). Genotype and mycotoxin analyses confirmed that 72.2% of F. asiaticum isolates were producers of deoxynivalenol (DON) with 3-acetyl deoxynivalenol (3ADON), and the remainder were nivalenol (NIV) producers. Pathogenicity assays showed that both 3ADON and NIV chemotypes of F. asiaticum could cause FHB in rice, but NIV chemotypes were significantly (p < .05) more aggressive than 3ADON chemotypes. Three Fusarium mycotoxins, DON, NIV, and zearalenone, occurred naturally at low concentrations in the weed samples. Taken together, this study provides insight into the mycotoxin production and aggressiveness of F. asiaticum isolates from gramineous weeds in China.  相似文献   

2.
This study aimed to assess the extent and distribution of Fusarium graminearum species complex (FGSC) diversity in rice seeds produced in southern Brazil. Four species and two trichothecene genotypes were detected among 89 FGSC isolates, based on a multilocus genotyping assay: F. asiaticum (69·6%) with the nivalenol (NIV) genotype, F. graminearum (14·6%) with the 15‐acetyldeoxynivalenol (ADON) genotype, and F. cortaderiae (14·6%) and F. meridionale (1·1%), both with the NIV genotype. Seven selected F. asiaticum isolates from rice produced NIV in rice‐based substrate in vitro, at levels ranging from 4·7 to 84·1 μg g?1. Similarly, two F. graminearum isolates from rice produced mainly 15‐ADON (c. 15–41 μg g?1) and a smaller amount of 3‐ADON (c. 6–12 μg g?1). One F. meridionale and two F. cortaderiae isolates did not produce detectable levels of trichothecenes. Two F. asiaticum isolates from rice and two from wheat (from a previous study), and one F. graminearum isolate from wheat, were pathogenic to both crops at various levels of aggressiveness based on measures of disease severity in wheat spikes and rice kernel infection in a greenhouse assay. Fusarium asiaticum and the reference F. graminearum isolate from wheat produced NIV, and deoxynivalenol and acetylates, respectively, in the kernels of inoculated wheat heads. No trichothecene was produced in kernels from inoculated rice panicles by any of the isolates. These findings constitute the first report of FGSC composition in rice outside Asia, and confirm the dominance of F. asiaticum in rice agroecosystems.  相似文献   

3.
Fusarium graminearum species complexes (FGSCs), such as Fusarium asiaticum and F. graminearum, are important pathogens that cause Fusarium head blight (FHB) in several cereal crops worldwide. In this study, we collected 342 gramineous weed samples in the proximity of rice fields from May to June 2018 in Korea. Among the 500 Fusarium isolates from the weed samples, 13 species of Fusarium were identified, and F. asiaticum (41.2%), F. avenaceum (18.0%), F. acuminatum (16.4%) and F. graminearum (14.8%) were the most frequently isolated. The trichothecene genotype analysis showed that 206 F. asiaticum strains consisted of the nivalenol (NIV) genotype (n = 195, 94.7%) and 3-acetyldeoxynivalenol (3ADON) genotype (n = 11, 5.3%), whereas 74 F. graminearum strains consisted of the 15-acetyldeoxynivalenol (15ADON) genotype (n = 58, 78.4%) and 3ADON genotype (= 16, 21.6%). Geographical differences were observed in the FGSC and trichothecene genotype compositions, which appeared host-dependent between the southern provinces and mid-eastern provinces. The aggressiveness assessment of FHB showed that the 3ADON chemotype was most aggressive followed by the 15ADON and NIV chemotypes in wheat, while the NIV chemotype was most aggressive followed by the 3ADON and 15ADON chemotypes in rice. The F. asiaticum strains grew slowly and produced fewer conidia and perithecia than the F. graminearum strains, regardless of their chemotypes. The results of this study suggest that F. asiaticum with the NIV chemotype has a host preference for rice, and FHB-causing pathogens can be harboured in gramineous weeds, which play a role in the dispersal of FHB pathogens to rice and other cereal crops.  相似文献   

4.
Fusarium head blight (FHB) in small grain cereals is primarily caused by the members of the Fusarium graminearum species complex. These produce mycotoxins in infected grains, primarily deoxynivalenol (DON); acetylated derivatives of DON, 3‐acetyl‐DON (3‐ADON) and 15‐acetyl‐DON (15‐ADON); and nivalenol (NIV). This study reports the isolation of Fusarium cerealis in infected winter wheat heads for the first time in Canada. A phylogenetic analysis based on the TRI101 gene and F. graminearum species‐specific primers revealed two species of Fusarium: F. graminearum sensu stricto (127 isolates) and F. cerealis (five isolates). Chemotype determination based on the TRI3 gene revealed that 65% of the isolates were 3‐ADON, 31% were 15‐ADON and 4% were NIV producers. All the F. cerealis isolates were of NIV chemotype. Fusarium cerealis isolates can often be misidentified as F. graminearum as the morphological characteristics are similar. Although the cultural and macroconidial characteristics of F. graminearum and F. cerealis isolates were similar, the aggressiveness of these isolates on susceptible wheat cultivar Roblin and moderately resistant cultivar Carberry differed significantly. The F. graminearum 3‐ADON isolates were most aggressive, followed by F. graminearum 15‐ADON and F. cerealis NIV isolates. The findings from this study confirm the continuous shift of chemotypes from 15‐ADON to 3‐ADON in North America. In Canada, the presence of NIV is limited to barley samples and the discovery of NIV‐producing F. cerealis species in Canadian wheat fields may pose a serious concern to the Canadian wheat industry in the future.  相似文献   

5.
Fusarium head blight (FHB) is one of the most important fungal diseases affecting wheat worldwide and it is caused mainly by species within the Fusarium graminearum species complex (FGSC). This study evaluated the presence of FGSC in durum wheat from the main growing area in Argentina and analyzed the trichothecene genotype and chemotype of the strains isolated. Also, the genetic variability of the strains was assayed using ISSR markers. Molecular analysis revealed that among the strains isolated and identified morphologically as F. graminearum, there were 14 strains identified as F. cerealis. Also, it revealed that durum wheat grains were mostly contaminated by F. graminearum, being this the only species reported so far, within the FGSC, affecting durum wheat in Argentina. Analysis of molecular variance (AMOVA) indicated a high genetic variability within rather than between F. graminearum populations. All F. graminearum strains presented 15ADON genotype and were able to produce DON while all F. cerealis strains presented the NIV genotype and most of them were able to produce this toxin. The finding of F. cerealis in durum wheat grains indicates the need for investigating if this fungus is the responsible for the NIV contamination found in wheat in Argentina.  相似文献   

6.
Fusarium graminearum is an important pathogen causing Fusarium head blight (FHB) on wheat and barley and Fusarium ear rot (FER) on maize, and harvested grains often are contaminated with trichothecenes such as deoxynivalenol (DON) and nivalenol (NIV) that are a major health and food safety concern due to their toxicity to humans and farm animals. In this study, species identity and trichothecene toxin potential of 294 members of the Fusarium graminearum species complex (FGSC) collected from wheat, barley and maize in France in 2011 was determined using a microsphere-based multilocus genotyping assay. F. graminearum was predominant on all three hosts, but three isolates of F. cortaderiae and two isolates representing F. graminearum × F. boothii hybrids were also identified from maize. The 15-ADON trichothecene chemotype predominated on all three hosts, representing 94.7 %, 87.8 % and 85.4 % of the strains on barley (N?=?19), wheat (N?=?90), and maize (N?=?185), respectively. However, the NIV chemotype was found in 12.2 % of the wheat isolates and in 14.6 % of the maize isolates. Only a single FGSC isolate from this study, originating from barley, was found to have the 3-ADON chemotype. Regional differences could be observed in the distribution of the 15-ADON and NIV chemotypes, with the NIV producing-isolates being present at higher frequency (21.2 %) in the South of France compared to the rest of the country (4.4 %). Such information is critical because of the increased concern associated with NIV contamination of cereals. In addition, these results are needed to develop management strategies for FHB and FER in France and to improve understanding of the distribution and significance of FGSC diversity in Europe and worldwide.  相似文献   

7.
Combined analyses of the natural occurrence of fusarium head blight (FHB), mycotoxins and mycotoxin‐producing isolates of Fusarium spp. in fields of wheat revealed FHB epidemics in 12 of 14 regions in Hubei in 2009. Mycotoxin contamination ranged from 0·59 to 15·28 μg g?1 in grains. Of the causal agents associated with symptoms of FHB, 84% were Fusarium asiaticum and 9·5% were Fusarium graminearum, while the remaining 6·5% were other Fusarium species. Genetic chemotyping demonstrated that F. asiaticum comprised deoxynivalenol (DON), 3‐acetyldeoxynivalenol (3‐AcDON), 15‐acetyldeoxynivalenol (15‐AcDON) and nivalenol (NIV) producers, whereas F. graminearum only included DON and 15‐AcDON producers. Compared with the chemotype patterns in 1999, there appeared to be a modest shift towards 3‐AcDON chemotypes in field populations during the following decade. However, isolates genetically chemotyped as 3‐AcDON were present in all regions, whereas the chemical 3‐AcDON was only detected in three of the 14 regions where 3‐AcDON accounted for 15–20% of the DON and acetylated forms. NIV mycotoxins were detected in seven regions, six of which also yielded NIV chemotypes. The number of genetic 3‐AcDON producers was positively correlated with amounts of total mycotoxins (DON, NIV and acetylated forms) or DON in wheat grains. Chemical analyses of wheat grains and rice cultures inoculated with different isolates from the fields confirmed their genetic chemotypes and revealed a preferential biosynthesis of 3‐AcDON and 4‐AcNIV in rice. These findings suggest the importance of chemotyping coupled with species identification for improved prediction of mycotoxin contamination in wheat.  相似文献   

8.
Members of the Fusarium graminearum species complex (FGSC), such as F. graminearum and F. asiaticum, are the main cause of fusarium head blight (FHB) of wheat and barley worldwide. In this study, 117 FGSC isolates obtained from commercial barley grain produced in Argentina (= 43 isolates), Brazil (= 35), and Uruguay (= 39) were identified to species and trichothecene genotypes, and analysed using amplified fragment length polymorphism (AFLP) and sequence‐related amplified polymorphism (SRAP) markers. In addition, reductase (RED) and trichothecene 3‐O‐acetyltransferase (Tri101) were sequenced for a subset of 24 isolates. The majority of the isolates (= 103) were identified as F. graminearum, which was the only species found in Argentina. In Uruguay, only one F. cortaderiae isolate was found among F. graminearum isolates. In Brazil, F. graminearum also dominated the collection (22/35), followed by F. meridionale (8/35), F. asiaticum (2/35), F. cortaderiae (2/35) and F. austroamericanum (1/35). Species were structured by trichothecene genotype: all F. graminearum were of the 15‐acetyldeoxynivalenol (ADON), F. meridionale, F. asiaticum and F. cortaderiae were of the nivalenol (NIV), and F. austroamericanum was of the 3‐ADON genotype. Both AFLP and SRAP data showed high levels of genetic variability, which was higher within than among countries. Isolates were not structured by country of origin. SRAP analysis grouped F. graminearum in a separate cluster from the other species within the complex. However, AFLP analysis failed to resolve the species into distinct clades with partial clustering of F. meridionale, F. austroamericanum, F. asiaticum and F. graminearum isolates.  相似文献   

9.
通过对江苏、安徽、山东、河南、湖北、河北和四川7省小麦赤霉病菌对多菌灵抗性及敏感菌株Fusarium asiaticum和F.graminearum的鉴定、所产生毒素的化学型及多菌灵抗性菌株检出时序性的分析,初步推测了小麦赤霉病菌对多菌灵抗性群体在中国麦区的扩散路径。结果表明:江淮流域的江苏、安徽、湖北3省和四川省小麦赤霉病菌对多菌灵的抗性或敏感菌株优势群体均是F.asiaticum,而黄淮流域的山东、河南2省及河北省小麦赤霉病菌对多菌灵的敏感菌株优势群体为F.graminearum,抗性菌株优势群体则为F.asiaticum。江苏、安徽、山东和河南抗多菌灵菌株F.asiaticum产生毒素的化学型为3-AcDON和NIV,并以3-AcDON为主。江苏省连续使用多菌灵防治小麦赤霉病长达20多年后才检测到田间抗性菌株,而近年来检测到田间抗性菌株的山东、河南2省用多菌灵防治赤霉病的历史较短,且为偶尔使用,药剂的选择压力相对较小,因此推测山东和河南麦区出现的小麦赤霉病菌抗多菌灵菌株可能是通过种子调运及联合收割机跨区作业等方式从抗药性发生较早的江淮麦区流入的。  相似文献   

10.
A sample of 140 Fusarium graminearum isolates from Rio Grande do Sul, Brazil, representing three populations at least 150 km from one another, were examined for trichothecene genotype based on PCR amplification of portions of the Tri3 and Tri12 genes and a species‐specific (Fg16F/R) primer pair. Genetic diversity was assessed in a sample of 103 F. graminearum lineage 7 (F. graminearum sensu stricto) isolates using amplified fragment length polymorphism (AFLP) markers. The 15‐ADON genotype was dominant, followed by the NIV genotype (2–18% prevalence), across all three populations. All NIV‐type isolates were in lineage 2 (F. meridionale) and all 15‐ADON‐type isolates were in lineage 7. Isolates with the same haplotype were rare and genotypic diversity was uniformly high (≥98% of the count), suggesting that recombination has played a significant role. The number of migrants (Nm) was estimated between 5 and 6 across all loci and all populations, but the high frequency of private alleles (up to 30%) suggests a historical, rather than contemporary, gene flow. Regarding linkage disequilibrium, 0·8, 1·5 and 2·2% of the locus pairs from the three populations were in disequilibrium, which is lower than values reported in other locations. Thus, Brazilian populations differ from those found in Europe, North America and most of Asia in the presence of a significant frequency (7·8%) of isolates of the NIV genotype in lineage 2.  相似文献   

11.
Genetic subdivision of Fusarium asiaticum was investigated using a collection of 478 isolates originating from the Kyushu area and Aichi Prefecture, Japan and Zhejiang Province in China. Trichothecene-type determination by a multiplex PCR-test indicated that all isolates were either of a nivalenol (NIV) or a 3-acetyl deoxynivalenol (3ADON) type. The 15-acetyl deoxynivalenol (15ADON) type was not detected in this collection. Based on a Bayesian model-based clustering method using allele data obtained with 11 variable number of tandem repeats (VNTR) markers, we detected three genetic clusters. The majority of isolates in the clusters were NIV isolates from both Japan and China, Japanese 3ADON and Chinese 3ADON isolates, respectively. High levels of fixation indices and low levels of effective number of migrants were observed between the genetic clusters. Data was re-analyzed by classifying the isolates into six groups according to trichothecene type and geographic location. Population analyses of these re-classified groups indicated that the genetic subdivisions of F. asiaticum were correlated with both trichothecene type and geographic differences. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
2013年从湖北省7个小麦主产区分离获得106株禾谷镰刀菌,测定了其对戊唑醇和多菌灵的敏感性。结果表明:戊唑醇和多菌灵对所有供试菌株的EC50值分别为0.064~0.778和0.090~0.858 mg/L。采用SAS软件的W法对EC50分布进行了正态性检验,表明106株菌株对戊唑醇和多菌灵敏感性的频率分布符合正态分布,其EC50平均值分别为(0.383±0.129)和(0.526±0.151)mg/L。不同地区来源的菌株对两种药剂的敏感性存在显著差异,其中襄阳的菌株对两种药剂的敏感性显著低于其他6个地区的。研究结果显示:湖北省小麦赤霉病菌未出现对戊唑醇和多菌灵抗性菌群,两种药剂用于防治小麦赤霉病仍具有使用价值。  相似文献   

13.
Fusarium head blight (FHB) is one of the most destructive diseases of wheat. Twelve small commercial wheat fields (size 1–3 hectares) were sampled in Germany for Fusarium populations at three spots per field with 10 heads each. PCR assays using generic primers confirmed 338 isolates as F.graminearum sensu stricto (s.s.) (64.9%) out of 521 Fusarium spp. that were further analyzed. Populations of F. graminearum s.s. in Germany contain three types of trichothecenes with a dominancy of 15-acetyldeoxynivalenol chemotype (92%) followed by 3-acetyldeoxynivalenol chemotype (6.8%) and a few isolates of nivalenol chemotype (1.2%). All these isolates were genotyped using 19 microsatellite loci. The 12 populations showed a high genetic diversity within the small scale sampling areas resulting in 300 different haplotypes. Genetic diversity within populations (71.2%) was considerably higher than among populations (28.8%) as shown by analysis of molecular variance. Gene flow (Nm) between populations ranged from 0.76–3.16. Composition of haplotypes of one population followed over 2 years changed considerably. No correlation between genetic and geographical distance was found. In conclusion, populations of F. graminearum s.s. in Germany display a tremendous genetic variation on a local scale with a restricted diversity among populations.  相似文献   

14.
Fusarium head blight (FHB), caused principally by Gibberella zeae (Fusarium graminearum), is a devastating disease of small grains such as wheat and barley worldwide. Grain infected with G. zeae may be contaminated with trichothecene mycotoxins such as deoxynivalenol (DON) and nivalenol (NIV). Strains of G. zeae that produce DON may also produce acetylated derivatives of DON: 3‐acetyl‐DON (3‐ADON) and 15‐acetyl‐DON (15‐ADON). Gradients (clines) of 3‐ADON genotypes in Canada have raised questions about the distribution of G. zeae trichothecene genotypes in wheat fields in the eastern USA. Tri3 and Tri12 genotypes were evaluated in 998 isolates of G. zeae collected from 39 winter wheat fields in New York (NY), Pennsylvania (PA), Maryland (MD), Virginia (VA), Kentucky (KY) and North Carolina (NC). Ninety‐two percent (919/998) of the isolates were 15‐ADON, 7% (69/998) were 3‐ADON, and 1% (10/998) was NIV. A phylogenetic analysis based on portions of three genes (PHO, RED and URA) from 23 isolates revealed two species of Fusarium (F. graminearum sensu stricto and one isolate of F. cerealis (synonym F. crookwellense)). An increasing trend of 3‐ADON genotypes was observed from NC (south) to NY (north). Punctuated episodes of atmospheric transport may favour a higher frequency of 3‐ADON genotypes in the northeastern USA, near Canada, compared with the mid‐Atlantic states. Discoveries of the NIV genotype in NY and NC indicate the need for more intensive sampling in the surrounding regions.  相似文献   

15.
Fusarium graminearum causes fusarium head blight (FHB) of wheat and gibberella ear rot (GER) of corn in Canada and also contaminates grains with trichothecene mycotoxins. Very little is known about trichothecene diversity and population structure of the fungus from corn in Ontario, central Canada. Trichothecene genotypes of Fgraminearum isolated from corn (= 452) and wheat (= 110) from 2010 to 2012 were identified. All the isolates were deoxynivalenol (DON) type. About 96% of corn isolates and 98% of wheat isolates were 15‐acetyl deoxynivalenol (15ADON) type. The fungal population structures from corn (= 313) and wheat (= 73) were compared using 10 variable number tandem repeat (VNTR) markers. The fungal populations and subpopulations categorized based on host, cultivar groups, years and geography showed high gene (= 0.818–0.928) and genotypic (GD = 0.999–1.00) diversity. Gene flow was also high between corn and wheat population pairs (Nm = 8.212), and subpopulation pairs within corn (Nm = 7.13–23.614) or wheat (Nm = 19.483) populations. Phylogenetic analysis revealed that isolates from both hosts were F. graminearum clade 7. These findings provide baseline data on 3‐acetyl deoxynivalenol (3ADON) and 15ADON profiles of Fgraminearum isolates from corn in Canada and are useful in evaluating mycotoxin contamination risks in corn and wheat grains. Understanding the fungal genetic structure will assist evaluation and development of resistant cultivars/germplasm for FHB on wheat and GER on corn.  相似文献   

16.
Fusarium graminearum, Fusarium culmorum and Fusarium cerealis are major causal agents of Fusarium Head Blight (scab) which is a disease of global significance in all cereal growing areas. These fungi produce trichothecene mycotoxins, principally nivalenol (NIV) and deoxynivalenol (DON). Genes Tri13 and Tri7 from the trichothecene biosynthetic gene cluster convert DON to NIV (Tri13) and NIV to 4-acetyl-NIV (Tri7). We have developed positive–negative PCR assays based on these two genes, which accurately indicate a DON or NIV chemotype in F. graminearum, F. culmorum and F. cerealis. These assays are useful in assessing the risk of trichothecene contamination, and can be informative in epidemiological studies. All NIV chemotype isolates studied have functional copies of both Tri13 and Tri7, and all DON-producing isolates have both genes disrupted or deleted. We have identified several mutations in these genes, which are conserved across F. graminearum lineage, RAPD and SCAR groupings and between the three species. There appears to be evidence of inter-species hybridisation within the trichothecene biosynthetic gene cluster.  相似文献   

17.
河南省小麦赤霉病菌种群组成及致病力分化   总被引:1,自引:0,他引:1  
 为明确河南省小麦赤霉病种群组成和致病力分化情况,2007—2014年对河南省15个市84个田块的327个小麦赤霉病菌进行种群鉴定、毒素化学型分析和致病力分化研究,结果表明:Fusarium graminearum s. str.和F. asiaticum是河南省小麦赤霉病的优势种群(97%),F. pseudograminearum(2.1%)、F. culmorum(0.3%)、F. equiseti(0.3%)、F. verticillioids(0.3%)为次要种群;对于禾谷镰刀菌复合群来说,豫北地区分布只有F. graminearum s. str.,豫中地区F. graminearum s. str.和F. asiaticum都存在,以F. graminearum s. str.为主,豫南地区F. graminearum s. str.和F. asiaticum都存在,以F. asiaticum为主;291个F. graminearum s. str.都为15ADON类型,26个F. asiaticum菌株中22个为3ADON,1个为15ADON,3个为NIV类型;F. graminearum s. str.(15ADON)也存在致病力分化,强、中、弱致病力的菌株在河南省的比例约为2:2:1。  相似文献   

18.
Fungal species comprising the Fusarium graminearum species complex (FGSC) may cause disease in maize and wheat. Host preference within the FGSC has been suggested, in particular F. boothii towards maize ears. Therefore, the disease development and mycotoxin production of five FGSC species in maize and wheat grain was determined. Eighteen isolates representing F. acaciae-mearnsii, F. boothii, F. cortaderiae, F. graminearum and F. meridionale were used. Each isolate was inoculated on maize ears and wheat heads to determine host preferences. Disease severity and disease incidence was measured for maize and wheat, respectively. Fungal colonisation and mycotoxins, deoxynivalenol (DON), nivalenol and zearalenone, was also quantified. Isolates differed significantly (P < 0.05) in their ability to produce symptoms on maize ears, however, no significant differences between FGSC species were determined. Similarly, significant differences (P < 0.05) between isolates but not between FGSC species in disease incidence on wheat were determined. The isolates also differed significantly (P < 0.05) in their ability to colonise maize and wheat grain. No significant differences in fungal colonisation, among the five FGSC species, were determined in field grown maize. However, under greenhouse conditions, F. boothii was the most successful coloniser of maize grain (P < 0.05). In wheat, F. graminearum colonised the grain more successfully and produced significantly more (P < 0.05) DON than the other species. Fusarium boothii isolates were the best colonisers and mycotoxin producers in maize, and F. graminearum isolates in wheat. The selective advantage of F. boothii to cause disease on maize was supported in this study.  相似文献   

19.
Fusarium crown rot of wheat has been spreading in the Huanghuai wheat-growing area in China since 2010, leading to a potential yield loss. To investigate the pathogens associated with this disease in Jiangsu and Shandong provinces in recent years, 617 Fusarium isolates were isolated from nine sites in these two provinces between 2014 and 2016. Of these isolates, 372 were identified as Fusarium pseudograminearum, and the remaining isolates were identified as F. asiaticum and F. graminearum, suggesting that F. pseudograminearum is becoming a predominant causative pathogen of crown rot of wheat in eastern China. Trichothecene gene detection and chemical analyses of trichothecenes indicated that the F. pseudograminearum isolates belonged to the 3-ADON or 15-ADON chemotype, and one isolate had the NIV genotype but produced no detectable NIV. 3-ADON isolates were predominant in Jiangsu, whereas 15-ADON isolates were prevalent in Shandong. The mating type of the F. pseudograminearum isolates were identified. MAT-1 and MAT-2 existed, but in most collections, particularly those in Jiangsu, the ratios of the two mating types deviated significantly from an expected 1:1 ratio. The reason for the occurrence of F. pseudograminearum is hypothesized, and the chemotype and mating type distribution of this species in these two provinces are analysed.  相似文献   

20.
由禾谷镰孢菌群Fusarium graminearum clade引起的赤霉病是小麦的重要病害。为明确山东省小麦赤霉病菌的种群组成及其致病力,于2011年和2012年从山东省15地市分离了95株小麦赤霉病菌,在形态和分子生物学鉴定种的基础上,采用鉴定B型毒素化学型的特异性引物进行毒素化学型分析。在95个菌株中,93株分离物为禾谷镰孢菌F.graminearum,2株为燕麦镰孢菌F.avenaceum。94株分离物为脱氧雪腐镰孢菌烯醇(deoxynivalenol,DON)化学型,1株为雪腐镰孢菌烯醇(nivalenol,NIV)化学型。在94株DON毒素化学型菌株中,90株为15-乙酰脱氧雪腐镰孢菌烯醇(15-acetyldeoxynivalenol,15-AcDON)化学型,4株为3-乙酰脱氧雪腐镰孢菌烯醇(3-acetyldeoxynivalenol,3-AcDON)化学型。在小麦扬花期,采用单花滴注接种法对29个菌株进行了致病力测定,供试菌株的致病力分化明显。表明在山东省冬小麦产区,产15-AcDON毒素的F.gra-minearum是小麦赤霉病菌的优势种群。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号