首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 O2 and pH microsensors were used to analyse the microdistribution of O2 and pH inside and outside roots of lowland rice (Oryza sativa L.). The roots of 3-week-old transplants had O2 concentrations of about 20% air saturation at the surface, but due to a high rate of O2 consumption in the rhizosphere, the oxic region only extended about 0.4 mm into the surrounding soil. Also the fine lateral roots created an oxic zone extending about 0.15 mm into the soil. The O2 concentration within the roots approached air saturation close to the base, but only about 40–60% of air saturation in a region about 8 cm below the base where lateral rootlets were present. A shift from air to N2 around the leaves led to a drop of 50% in the O2 concentration after 12 min at a distance of 8.5 cm from the base. Flowering plants did not export O2 to the soil from the majority of their roots, but high microbial activity was present in a very thin biofilm covering the root surface. A brown colour around the thin lateral roots indicated some O2 export from these also during flowering. No oxidized zone was present around the roots at later stages of crop growth. The roots caused only minor minima in pH (<0.2 pH units) in the rhizosphere as compared to the bulk soil. Illumination of the plants had no effect on rhizosphere pH. Received: 28 April 1998  相似文献   

2.
Nitrification associated with the various components [subsurface soil from unplanted and planted (rhizosphere) fields, standing water and surface soil from planted and unplanted fields and leaf sheath suspensions] of submerged rice paddies was examined in incubation experiments with solutions inoculated with soil or water samples. Substantial nitrification occurred in all samples, standing water and surface soil samples in particular, during their 40-day incubation with NH 4 + –N. Almost all the NH 4 + –N, disappeared during incubation with standing water, was recovered as NO inf3 sup- –N. This, compared to 70–80% from all soil samples and only 29% from leaf sheath suspensions. Significant loss of nitrogen, especially from leaf sheath suspensions, is probably due to nitrification-denitrification as evidenced by its complete recovery in the presence of N-Serve. Nitrification potential of the soil and water samples varied with the crop growth stage and was more pronounced at tillering and panicle inititation stages than at other stages. Nitrification potential of samples from green-manure-amended plots was distinctly less than that of samples from control and urea-amended plots. Most probable number (MPN) estimates of ammonium-oxidizing bacteria were always higher in surface soil in both planted and unplanted plots at all stages of crop growth.Dedicated to Professor J. C. G. Ottow on the occasion of his 60th birthday  相似文献   

3.
 Nitrous oxide (N2O) emissions via the nitrification (I nit) and denitrification (I den) pathways were successfully measured with in-field incubation of soil cores in preserving jars at 0 Pa and 5–10 Pa acetylene. From the incubations, fractions of nitrification – N2O over total N2O (I nit / I tot) – and denitrification – N2O over total N2O (I den / I tot) – were obtained. Actual field emissions of N2O via nitrification (F nit) and denitrification (F den) were calculated by multiplying the fractions from the incubation technique with the daily N2O emission (F day) determined with a direct soil cover method. The approach presented here was successful for a whole range of soil moisture conditions in intensive grassland. F nit and F den followed the trends of soil ammonium and soil nitrate. Received: 31 October 1997  相似文献   

4.
 A low efficiency of use of N fertilisers has been observed in mid-Wales on permanent pasture grazed intensively by cattle. Earlier laboratories studies have suggested that heterogeneity in redox conditions at shallow soil depths may allow nitrification and denitrification to occur concurrently resulting in gaseous losses of N from both NH4 + and NO3 . The objective of the investigation was to test the hypothesis that both nitrification and denitrification can occur simultaneously under simulated field capacity conditions (∼5 kPa matric potential). Intact soil cores were taken from grassland subjected to both grazing and amenity use. The fate of applied NH4 + was examined during incubation. 15N was used as a tracer. Nitrapyrin was used as a nitrification inhibitor and acetylene was used to block N2O reductase. More than 50% of N applied as NH4 + disappeared over a period of 42 days from the soil mineral-N pool. Some of this N was evolved as N2O. Accumulation of NO3 –N in the surface 0–2.5 cm indicated active nitrification. Addition of nitrapyrin increased N recovery by 26% and inhibited both the accumulation of NO3–N and emission of N2O. When intact field cores were incubated after addition of 15N-urea, all of the N2O evolved was derived from added urea-N. It was concluded that nitrification and denitrification do occur simultaneously in the top 7.5 cm or so, of the silty clay loam grassland topsoils of mid-Wales at moisture contents typical of field capacity. The quantitative importance of these concurrent processes to N loss from grassland systems has not yet been assessed. Received: 15 December 1998  相似文献   

5.
Summary Denitrification in the rhizosphere of wheat and rice was studied in relation to aerenchyma formation. Seedlings were grown in quartz silt amended with mineral nutrients at given bulk densities and water tensions. In adventitious wheat roots the formation of cortical lacunae was strongly dependent on soil aeration. Growing the wheat plants in dry (–20 kPa) and moist substrate (–2 kPa) established aerenchyma contents of 3% and 15%, respectively. Denitrification was measured after the introduction of equal moisture levels in the substrates of both treatments. The higher aerenchyma content of roots pregrown in the wetter substrate did not counteract denitrification in the rhizosphere which had doubled in this treatment. In contrast to the unspecific lysis of cortical cell walls, the well organized formation of aerenchyma in rice roots was independent of soil aeration. Root porosity averaged 14%. As in wheat, it was not related to denitrification. However, the level of denitrification per mg of root dry matter was about four times lower than that of wheat. The addition of decomposable organic matter (cellulose) to the substrate stimulated aerenchyma formation in rice and considerably increased denitrification. The results suggest that denitrification in the rhizosphere is independent of aerenchyma formation.  相似文献   

6.
 Flushes of C and N from fumigation-extraction (FE-C and FE-N, respectively), substrate-induced respiration (SIR), denitrification enzyme activity (DEA) and numbers of NH4 + and NO2 oxidizers were studied in the rhizospheres of Scots pine (Pinus sylvestris L.), Norway spruce [(Picea abies (L.) Karsten] and silver birch (Betula pendula Roth) seedlings growing in soil from a field afforestation site. The rhizosphere was defined as the soil adhering to the roots when they were carefully separated from the rest of the soil in the pots, termed as "planted bulk soil". Soil in unplanted pots was used as control soil. All seedlings had been grown from seed and had been infected by the natural mycorrhizas of soil. Overall, roots of all tree species tended to increase FE-C, FE-N, SIR and DEA compared to the unplanted soil, and the increase was higher in the rhizosphere than in the planted bulk soil. In the rhizospheres tree species did not differ in their effect on FE-C, FE-N and DEA, but SIR was lowest under spruce. In the planted bulk soils FE-C and SIR were lowest under spruce. The planted bulk soils differed probably because the roots of spruce did not extend as far in the pot as those of pine and birch. The numbers of both NH4 + and NO2 oxidizers, determined by the most probable number method, were either unaffected or decreased by roots, with the exception of the spruce rhizosphere, where numbers of both were increased. Received: 26 August 1998  相似文献   

7.
 The experiment, carried out on a forest and arable light-textured soil, was designed to study the temperature response of autotrophic and heterotrophic N2O production and investigate how the N2O flux relates to soil respiration and O2 consumption. Although N2O production seemed to be stimulated by a temperature increase in both soils, the relationship between production rate and temperature was different in the two soils. This seemed to depend on the different contribution of nitrification and denitrification to the overall N2O flux. In the forest soil, almost all N2O was derived from nitrification, and its production rate rose linearly from 2  °C to 40  °C. A stronger effect of temperature on N2O production was observed in the arable soil, apparently as a result of an incremental contribution of denitrification to the overall N2O flux with rising temperature. The soil respiration rate increased exponentially with temperature and was significantly correlated with N2O production. O2 consumption stimulated denitrification in both soils. In the arable soil, N2O and N2 production increased exponentially with decreasing O2 concentration, though N2O was the main gas produced at any temperature. In the forest soil, only the N2 flux was related exponentially to O2 consumption and it outweighed the rate of N2O production only at >34  °C. Thus, it appears that in the forest soil, where nitrification was the main source of N2O, temperature affected the N2O flux less dramatically than in the arable soil, where a temperature increase strongly stimulated N2O production by enhancing favourable conditions for denitrification. Received: 26 August 1998  相似文献   

8.
Azorhizobium caulinodans strongly colonized the rhizosphere of rice plants after incorporation of Sesbania rostrata in a field trial throughout the growing season and during the fallow period until 19 weeks after incorporation of S. rostrata. A. caulinodans became well established in the rhizosphere (7.17 log cfu g–1 dry rice root) and colonized subsequent S. rostrata test plants. Three traditional and three improved high-yielding rice varieties were inoculated with A. caulinodans under gnotobiotic conditions. In none of the combinations did acetylene reduction activity significantly increase. Ethylene production on colonized rice roots only started after the growth medium had been supplemented with an extra C source (0.1 to 0.25% Na-lactate). This indicates that the bacterial nitrogenase activity is limited by energy supply. Four possible inoculant-carriers (peat, coir dust, bagasse, rice straw) were compared for long-term survival of the bacterial strain. Independent of the storage temperature (26  °C or 4  °C), the survival of A. caulinodans in peat and coir dust was very high during a 12-month period (>8 log cfu g–1 dry carrier), whereas the bagasse and rice straw carriers showed a serious decline from 3 months onwards. Received: 6 April 1999  相似文献   

9.
Summary Nitrification activity (formation of NO 2 + NO 3 per unit soil weight) was measured in the surface layer of 15 presubmerged soils incubated in petri dishes under flooded but aerobic conditions. soils with pH above 5 nitrified quickly, whereas soils with pH below this level did not nitrify or nitrified slowly. The pH values between 7 and 8.5 were optimal for nitrification. Organic-matter levels in the 15 soils of our study did not influence their nitrification activities. In a follow-up greenhouse pot study, after a period of 3 weeks, 15N-balance measurements showed that the loss of N through apparent denitrification did not follow the nitrification patterns of the soils observed in the petri dishes. Apparent denitrification accounted for 16.8% and 18.9% loss of 15N from a soil with insignificant nitrification activity and a soil with high nitrification activity, respectively. These results, thus, indicate a lack of correspondence between the nitrification activities of soil and the denitrification loss of N when the former was measured in the dark and the latter was estimated in the light. Soils that nitrified in the darkness of the incubator did not nitrify in the daylight in the greenhouse.  相似文献   

10.
翻耕会使耕层土壤发生显著位置交换。耕层土壤位置交换会通过影响土壤物理、化学和生物性状,改变氮素转化过程。本文研究了土层交换对黄淮海平原南端砂姜黑土硝化、反硝化过程和玉米生长及氮素利用的影响,为该区域选择合理的耕作方式、减少氮素损失及提高氮素利用效率提供理论依据。试验在人工气候室条件下,以土壤(0~35 cm)田间原位分层作为常规土层处理(CK),以原位0~10 cm和10~20 cm土层交换后作为土层交换处理(SE),并用20μm的尼龙网区分非根际和根际土壤。于玉米小喇叭口期利用荧光定量PCR技术测定土壤氨氧化微生物和反硝化菌群丰度,并结合非根际和根际土壤的硝化潜势、土壤呼吸、反硝化能力、反硝化潜势、土壤理化性质和玉米总氮含量及根系形态的测定,探讨土层交换对土壤氮素转化和玉米生长及氮素利用的影响。结果显示,SE处理的玉米植株氮吸收量比CK处理显著降低8.9%(P0.05)。土层交换显著影响根际而不是非根际土壤的硝化潜势,使其显著降低13.5%(P0.05);并使非根际和根际土壤的反硝化能力分别提高36.6%(P0.05)和8.4%(P0.05)。土层交换使非根际和根际土壤的可溶性有机碳含量分别提高11.7%(P0.05)和5.2%。相关分析显示硝化潜势与氨氧化细菌(AOB)丰度呈显著正相关(r=0.91**),与氨氧化古菌(AOA)丰度无显著相关关系;反硝化能力与土壤可溶性有机碳和呼吸速率呈显著正相关(r=0.89**和0.93**),与nirK、nirS拷贝数无显著相关性;玉米植株氮吸收量与根际土壤的硝化潜势、根表面积×AOB拷贝数都呈显著正相关(r=0.83*和0.86*),而与反硝化能力呈显著负相关(r=?0.88**)。以上结果表明砂姜黑土土壤硝化速率的降低和反硝化速率的增强,是土层交换后玉米氮素利用效率低的重要原因。AOB是硝化速率的主要驱动微生物。土层交换后土壤可溶性有机碳是反硝化能力的关键主导因子。在翻耕条件下,有效调节土壤可溶性有机碳含量是提高作物氮肥利用效率的关键。  相似文献   

11.
 The denitrifying enzyme activity (DEA), denitrification potential (DP) and anaerobic respiration (RESP) together with chemical characteristics were measured in three contrasting soils collected from experimental arable plots that had been subjected to long-term (21–23 years) fertilizer treatments. The plots sampled were either unfertilized or had received either annual inorganic NPK, manure and lime, or inorganic NPK and manure treatments. Addition of inorganic NPK, manure and lime led to large increases in the DEA for two of the three soils, but in the absence of lime, inorganic NPK and manure caused only small increases in DEA compared to unfertilized soils. Both DP and RESP were increased by the addition of inorganic NPK, manure and lime, but were substantially decreased by fertilizer treatments without lime. In most cases there was a simple relationship between soil pH and either DEA and DP, with those treatments that reduced soil pH also leading to reduced denitrification and vice versa. The effects of artificially increasing the pH to a value close to the pH in unfertilized soils (6.3) by addition of NaOH to the soils that had received inorganic NPK, and which had the lowest soil pH values, were to increase substantially DEA, DP and RESP. In soil from one of the sites that had been stored for 5 weeks, the DP values responded differently between the fertilizer treatments. The DP value was lowest in the soil that had inorganic NPK and manure, higher in the soil that received inorganic NPK, manure and lime and it was the highest in unfertilized (control) soil. The soil pH values for these treatments were 4.47, 5.79 and 6.58, respectively. However, when the soil pHs were adjusted by addition of either H2SO4 or NaOH to give a range between pH 2 and 12, the DP values from all three fertilizer treatments showed almost identical responses. The optimum pH value for DP was between 7 and 8 for all three fertilizer treatments. Substrate-induced respiration values from all fertilizer treatments showed a similar trend to DP when the soil pHs were modified. The results show that soil pH was an important factor which in the studied soils controls the microbial community in general and the community of denitrifiers in particular. However, denitrifiers showed a high pH resilience leading to no marked change of the pH optimum for potential denitrification. Received: 10 September 1998  相似文献   

12.
Coupled nitrification-denitrification and potential denitrification were measured as 15N2O and 15N2 evolution rates in ammonium sulphate-treated rice soils with or without Terrazole [5-ethoxy-3 (trichloromethyl) 1,2,3 Thiadizole] under laboratory and field conditions. The greatest coupled nitrification-denitrification activity was found after drying and rewetting the soil, with maximum values of 322 ng N cm–2 h–1 in the laboratory and 90.8 ng N cm–2 h–1 in the field. These 15N2O + 15N2 evolution rates were about 10 times lower than potential denitrification in these soils. These results and the observed decrease in 15N2O + 15N2 evolution rate in soils treated with Terrazole (60% under laboratory conditions and 52% under field conditions) indicate that denitrification was limited by coupled nitrification-denitrification activity. Oxygen and previous addition of ammonium sulphate appear to control the rate of 15N2O + 15N2 evolution in ammonium sulphate-fertilised soils.  相似文献   

13.
 The phosphate-solubilizing potential of the rhizosphere microbial community in mangroves was demonstrated when culture media supplemented with insoluble, tribasic calcium phosphate, and incubated with roots of black (Avicennia germinans L.) and white [Laguncularia racemosa (L.) Gaertn.] mangrove became transparent after a few days of incubation. Thirteen phosphate-solubilizing bacterial strains were isolated from the rhizosphere of both species of mangroves: Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus atrophaeus, Paenibacillus macerans, Vibrio proteolyticus, Xanthobacter agilis, Enterobacter aerogenes, Enterobacter taylorae, Enterobacter asburiae, Kluyvera cryocrescens, Pseudomonas stutzeri, and Chryseomonas luteola. One bacterial isolate could not be identified. The rhizosphere of black mangroves also yielded the fungus Aspergillus niger. The phosphate-solubilizing activity of the isolates was first qualitatively evaluated by the formation of halos (clear zones) around the colonies growing on solid medium containing tribasic calcium phosphate as a sole phosphorus source. Spectrophotometric quantification of phosphate solubilization showed that all bacterial species and A. niger solubilized insoluble phosphate well in a liquid medium, and that V. proteolyticus was the most active solubilizing species among the bacteria. Gas chromatographic analyses of cell-free spent culture medium from the various bacteria demonstrated the presence of 11 identified, and several unidentified, volatile and nonvolatile organic acids. Those most commonly produced by different species were lactic, succinic, isovaleric, isobutyric, and acetic acids. Most of the bacterial species produced more than one organic acid whereas A. niger produced only succinic acid. We propose the production of organic acids by these mangrove rhizosphere microorganisms as a possible mechanism involved in the solubilization of insoluble calcium phosphate. Received: 21 April 1999  相似文献   

14.
两个水稻品种根际土壤细菌和氨氧化细菌的群落结构差异   总被引:4,自引:0,他引:4  
赵爽  胡江  沈其荣 《土壤学报》2010,47(5):939-945
通过根盒试验比较了籼稻汕优63和粳稻武运粳7号苗期不同采样期根际土和土体土壤的硝化强度以及氨氧化细菌数量的差异,并且采用16S rDNA PCR-DGGE(Denaturing gradient gel electrophoresis)指纹图谱技术比较分析了上述两种水稻苗期不同采样期根际和土体土壤中细菌及其氨氧化细菌的群落结构变化。结果表明,两个水稻品种根际土壤中硝化强度和氨氧化细菌的数量随着生育期的延长均表现出一定的正相关性,汕优63籼稻根部土壤中的细菌和氨氧化细菌的丰富度和群落变化特征随着水稻生育时期的延长较武运7号粳稻的变化更为多样,说明籼稻品种根系和根际硝化作用更强,在其根系附近会产生更多的硝态氮。这种差异性严重影响水稻植株对氮素的利用效率。  相似文献   

15.
 The number of bacteria was determined during the growth of chrysanthemum plants on young (tip) and old (base) root parts. We assessed if the same conclusions could be drawn on the dynamics of bacterial populations during plant development when different reference units were used to express the bacterial counts. The results indicated that the total number of bacteria on the base decreased significantly during plant development, when expressed per root length, per root fresh weight or per root surface. The number of bacteria on the tip only decreased significantly when expressed per root length. Using the unit of dry weight of adhering soil, contradictory results were obtained for both base and tip; in general, the number of bacteria increased significantly during plant development. Thus, different reference units may lead to different conclusions. Root surface seemed to be the best unit to use, but the use of this unit requires time-consuming measurements. Regression analyses indicated that the reference unit "root surface" was highly correlated with root fresh weight (R 2=93%). Thus, once this relation is determined, the less time-consuming unit can be measured in the experimental work. To analyse the data, the colony-forming units should be expressed per root surface. Besides bacterial numbers during plant development, we assessed whether the bacterial populations collected showed different growth rates on agar plates. The growth rates of bacteria from the tip and base and different development stages of the plants showed differences, indicating differences in the metabolic state of the collected populations. Received: 9 December 1997  相似文献   

16.
 The effect of cucumber roots on survival patterns of the biocontrol soil inoculant Pseudomonas fluorescens CHA0-Rif was assessed for 22 days in two non-sterile soils, using a combination of total immunofluorescence cell counts, Kogure's direct viable counts and colony counts on plates containing rifampicin. In Eschikon soil (high fertility status for cucumber), CHA0-Rif persisted as culturable cells in bulk soil and in the rhizosphere, but colony counts were lower than viable counts and total cell counts inside root tissues. The occurrence of viable but non-culturable (VBNC) cells inside root tissues (5 log cells g–1 root) was unlikely to have resulted from the hydrogen peroxide treatment used to disinfect the root surface, as hydrogen peroxide caused the death of CHA0-Rif cells in vitro. In Siglistorf soil (low fertility status for cucumber), the inoculant was found mostly as non-culturable cells. Colony counts and viable counts of CHA0-Rif were similar, both in bulk soil and inside root tissues, whereas in the rhizosphere viable counts exceeded colony counts at the last two samplings (giving about 7 log VBNC cells g–1). In conclusion, soil type had a significant influence on the occurrence of VBNC cells of CHA0-Rif, although these cells were found in root-associated habitats (i.e. rhizosphere and root tissues) and not in bulk soil. Received: 12 November 1999  相似文献   

17.
Little information is available on the roles of earthworms in N transformation and biological activities in heavy metal-contaminated soils. The purpose of the present paper is to examine the effects of earthworm on nitrifying and denitrifying enzyme activities of Zn-treated soils. ZnCl2 solution was added to soils at rates ranging from 0 to 400 mg Zn kg–1 and was allowed to fractionate and stabilize for 60 days. The Zn-tolerant earthworm Pheretima sp., which had been previously screened, was then introduced into Zn-treated soils and allowed to work for 40 days. Original soils without the addition of Zn and introduction of earthworms but incubated under the same conditions were used as controls. Zn-treated soils without the introduction of earthworms were also used as controls. Results showed that earthworm activity increased both nitrifying and denitrifying enzyme activities of the soils. These beneficial effects of earthworms were particularly evident in the treatments where Zn had an adverse effect. Zn added at a rate 200 mg Zn kg–1 generally had a stimulating effect on the enzyme activities measured. However, Zn added at a rate >200 mg Zn kg–1 had an adverse effect on nitrifying and denitrifying enzyme activities, which could be alleviated or even completely eliminated by earthworm activities.  相似文献   

18.
 Rice paddies are an important human-made ecosystem for the global CH4 budget. CH4, which is produced in the predominantly anaerobic bulk soil layers, is oxidized significantly before it reaches the atmosphere. Roots of rice, in addition to supporting the consumption of CH4, contribute to the total CH4 production in the soil. The various controls of CH4 emission from this ecosystem depend on the structure of plant and microbial communities and their interactions. Availability of organic substrates, electron acceptors and other soil- and plant-related factors influence the activities of microbial communities. Agronomic practices including fertilization and application of pesticides have effects on CH4 emission. Recent studies using molecular retrieval approaches with small subunit rRNA-encoding gene (rDNA) sequences and functional genes, showed the richness of diversity of the microbial community in rice paddy soils, which includes members of the Archaea and methanotrophs. There is need for further research to know the consequences, at the ecosystem level, of changes in microbial diversity and microbial communities in paddy soils. This will aid in understanding the mechanisms involved in the mitigating effects of certain agricultural practices. Received: 13 July 1999  相似文献   

19.
 The NO turnover in soils was measured in two different experimental set-ups, a flow-through system, which is very time-consuming and needs rather sophisticated equipment, and a closed system using serum bottles. We compared the NO turnover parameters (NO consumption rate constant, NO production rate, NO compensation concentration) that were measured with both systems in different soils, under different conditions and in the presence of 10 Pa acetylene to inhibit nitrification. The values of the NO turnover parameters that were measured with the two systems under oxic conditions were usually comparable. The addition of acetylene did not affect the NO consumption rate constants of the soils with the exception of soil G1. However, the NO production rates and the NO compensation concentrations decreased significantly in the presence of acetylene, indicating that nitrification was the main source of NO in these soils. Only one soil (Bol) showed no nitrifying activity. Increasing soil moisture content resulted in decreasing NO consumption rate constants and NO production rates. Even at a high soil moisture content of 80% water holding capacity, nitrification was the main source of NO. The values of the NO turnover parameters that were measured with the two systems were not comparable under anoxic conditions. The NO consumption rate constants and the NO production rates were much lower in the closed than in the flow-through system, indicating that the NO consumption activity became saturated by the high NO concentrations accumulating in the closed system. Under oxic conditions, however, closed serum bottles were a cheap, easy and reliable tool with which to determine NO turnover parameters and to distinguish between nitrification and denitrification as sources of NO. Received: 21 April 1998  相似文献   

20.
根际增氧对水稻根系形态和生理影响的研究进展   总被引:2,自引:0,他引:2  
根际氧是影响稻田土壤环境和水稻根系生理代谢的重要环境因子,已有的关于水稻根际氧的综述多从低氧或缺氧胁迫的角度展开,随着技术的进步,越来越多的学者在水稻栽培中实施了主动的根际增氧措施,取得了一定的研究成果。根际增氧显著影响了水培水稻根系形态和结构,使其呈现细而长的特征,增氧条件下水稻根系形态、结构及其功能需求间存在内在的一致性;根际增氧对不同生育时期水稻的根系活力均有明显的促进作用,其增幅从10%到150%不等,并存在明显的品种间差异;从水稻根系形态、生理活性以及根部氮素形态转化等多个方面来看,增氧处理有利于水稻根系吸收氮素,但其对水稻氮素积累量的影响则与增氧处理方式和程度有关,过度增氧抑制了水稻植株对氮的利用,从而限制了其生物量的增加,反过来抑制了对氮的吸收。水稻对根际增氧的响应规律并非其对低氧和缺氧胁迫响应规律的简单倒转,饱和氧处理下水稻生物量和产量的剧烈降低表明了水稻对富氧响应的复杂性。探索根际增氧对三叶期前水稻幼苗的影响,完善根际增氧对水稻氮代谢的影响研究,并量化水稻田间需氧量,探索简单易行的苗期增氧措施,对进一步完善水稻育秧理论,改进水稻育秧技术具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号