首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Shiga toxin-producing Escherichia coli (STEC) strains isolated from healthy cattle (O111:NM, seven strains; O111:H8, three strains) in Brazil were studied and compared to previously characterized human strains in regard to their phenotypic and genotypic characteristics to evaluate their pathogenic potential. Most bovine STEC O111 strains were isolated from dairy calves, and strains with genotypes stx1 alone and stx1/stx2 (variant stx2) occurred in different regions. Irrespective of the stx genotype, all strains were positive for eae theta, alpha variants of tir, espA and espB, and for ler, qseA, iha, astA and efa1 genes. Only one strain was negative for EHEC-hlyA and all strains were negative for iha, saa and espP genes and for EAF and bfpA, genetic markers of EPEC. Except for the presence of stx2, bovine strains showed the same profile of putative virulence genes found among the human strains. Similar biochemical behavior was identified among the strains analysed. Two bovine STEC strains produced the localized adherence (LA) phenotype in 6-h tests with Caco-2 (human enterocyte) cells. Intimate attachment (judged by the FAS test) was found in 9 out of 10 bovine strains as it was observed for the human STEC strains. RAPD-PCR analysis showed two distinct RAPD groups among the STEC O111 strains examined. Despite the relative low frequency of STEC O111 strains recovered from cattle no differences in their pathogenic potential were observed compared to some strains isolated from human diarrhea, suggesting that healthy cattle may be a potential source of infection for humans in Brazil.  相似文献   

2.
This study identified potential virulence markers in 93 eae-positive and 179 eae-negative Shiga toxin-producing Escherichia coli (STEC), isolated from a random sampling of healthy cattle in southwestern Ontario. PCR amplification was used to identify genes for enterohemorrhagic E. coli (EHEC)-hemolysin, the EAF plasmid, and bundle-forming pili (Bfp); adherence to HEp-2 cells and to bovine colonocytes, and the fluorescent actin staining (FAS) test were used to characterize interaction of the bacteria with epithelial cells. The EHEC-hemolysin sequences were detected in 98% of eae-positive isolates compared with 34% of eae-negative isolates. All isolates were negative for EAF and bfp sequences. There was 100% correlation between localized adherence (LA) to HEp-2 cells and the FAS test. Forty-eight (52%) of the eae-positive isolates were LA/FAS-positive, whereas none of the 179 eae-negative isolates was positive in either test. Among the eae-negative isolates, 20 (11%) showed diffuse adherence and 5 (2.8%) showed enteroaggregative adherence to HEp-2 cells. Seventy-three percent of the eae-positive isolates adhered to bovine colonocytes, whereas only 26% of 120 eae-negative isolates that were tested adhered. All 13 O157:H7 isolates were positive for eae and EHEC-hemolysin gene sequences, LA/FAS, and adherence to bovine colonocytes. It is concluded that possession of genes for eae and EHEC hemolysin is correlated with the serotype of STEC, that production of EHEC hemolysin was highly correlated with serotypes implicated in human disease, and that none of the potential markers that were examined can be used to predict the potential virulence of an isolate.  相似文献   

3.
Pets can be reservoirs of Shiga toxin-producing Escherichia coli (STEC) strains. The aim of this study was to examine nine strains belonging to several serotypes (O91:H21, O91:H16, O178:H19, O8:H19, O22:H8, O22:HNT, ONT:H8), previously recovered from cats or dogs. To this end, we assessed a set of additional virulence genes (stx(2) subtype, subAB, ehxA, eae and saa), cytotoxic activity, and genetic relationships with strains isolated from cattle, meat and humans using pulsed-field gel electrophoresis (PFGE). Most of the isolates carried the stx(2) and/or stx(2vh-b) sequences, while only the O91:H21 isolate presented the mucus-activatable stx(2d) variant, as confirmed by sequencing the genes of subunits A and B. All the strains showed cytotoxic activity in cultured cells. One of the two O178:H19, selected for its high level of cytotoxicity in Vero cells, showed the ability to cause functional alterations in the human colon mucosa in vitro. None of the strains possessed the subAB, eae or saa genes and only the strains belonging to serotype O8:H19 carried the ehxA gene. The isolates shared 90-100% similarity by PFGE to epidemiologically unrelated strains of the corresponding serotypes recovered from cattle, meat or humans. Our results demonstrate that dogs and cats may have a role in the infection of humans by STEC, probably serving as a vehicle for bovine strains in the cycle of human infection, and thus emphasize the health risks for owners and their families.  相似文献   

4.
为了检测产志贺毒素大肠杆菌(STEC)在鸭源大肠杆菌中的分布情况,本研究建立检测STEC的多重PCR方法,针对STEC特有的毒力基因stx1、stx2、h&A和eaeA筛选了4对引物,通过对PCR反应条件的优化、特异性和灵敏度的检测,建立检测STEC的多重PCR,并应用该方法调查254株鸭源致病性E.coli和115株外表健康鸭的泄殖腔分离的E.coli中STEC的分布情况.在254株鸭源致病性E.coli中检测出6株STEC,从外表健康鸭的泄殖腔分离的115株E.coil中未检测到STEC.检出的STEC的血清型分别为O36、O60、O77、O78、O158和O7 & O92.本实验建立的检测STEC的多重PCR方法特异性好、灵敏度高;对鸭源E.coli的检测结果证实鸭致病性大肠杆菌中存在STEC菌株,分布频率较低,但其血清型具有广泛的宿主源,存在引起人类疾病的可能性.  相似文献   

5.
Shiga toxin‐producing Escherichia coli (STEC) can cause diarrhoea and severe diseases in humans, such as haemolytic uraemic syndrome. STEC virulence is considered to correlate with the amount of Shiga toxins (Stx) produced, especially Stx2, whose subtype Stx2a is most frequently associated with high virulence. Stx are encoded in prophages, which play an important role in STEC pathogenesis. The aim of this study was to evaluate stx2a expression levels and Stx2a phage production using qPCR and the double‐agar‐layer method in 29 STEC strains, corresponding to serotypes O26:H11 (6), O91:H21 (1), O145:H‐ (11) and O157:H7 (11), isolated from cattle and humans. Results were then tested for possible associations with serotype, origin or some genetic features. We observed heterogeneous levels of stx2a expression and Stx2a phage production. However, statistical comparisons identified a higher stx2a expression in response to mitomycin C in strains isolated from cattle than in those from humans. At the same time, compared to stx2a/stx2c strains, stx2a strains showed a higher increase in phage production under induced conditions. Notably, most of the strains studied, regardless of serotype and origin, carried inducible Stx2a phages and evidenced expression of stx2a that increased along with phage production levels under induced conditions.  相似文献   

6.
《Veterinary microbiology》2015,175(2-4):325-331
Even with advancements in pre- and post-harvest food safety, Shiga toxin-producing Escherichia coli (STEC) still present challenges to human health. Since cattle are the primary reservoir for STEC, lowering the prevalence of this pathogen in farm animals may reduce STEC outbreaks in humans. However, because many of the factors that modulate the colonization and persistence of STEC in cattle remain unknown, reducing STEC in this host is challenging. In this study, we evaluated a cohort of beef cattle one to eleven years of age to determine the effect of animal age on the prevalence of STEC. During the first year of sample collection, heifers had significantly lower STEC prevalence than cows (37.5% vs. 70%). In the second year of sample collection, STEC prevalence peaked in cows that were two years of age and tended to decrease as animals became older. In addition, by studying a subset of the animals in both years, we observed an increase in STEC prevalence from 40.6% to 53.1% in heifers, whereas cows had a net decrease in STEC prevalence from 71.4% to 61.9%. The results from this study indicate that animal age is a significant factor that influences the prevalence of STEC in cattle. These findings have implications for the development of on-farm mitigation strategies by targeting animals with the highest risk of shedding; it could be possible to reduce pathogen transmission among cattle and prevent zoonotic or foodborne transmission to humans.  相似文献   

7.
Over a period of 1 year, the production of verotoxin was investigated in 1127 Escherichia coli isolated from 243 dairy cattle from 60 small farms in southern Brazil. Vero cell assay was used to detect toxins in culture supernatants from E. coli isolated from bovine feces. Shiga toxin-producing E. coli (STEC) detection rates were 95% (57 of 60) for farms and 49% (119 of 243) for cattle. Prevalence of STEC-positive cattle in the farms ranged from 0 to 100%. Ninety-six percent (315 of 327) of the STEC isolates did not react in the panel of sera used for typing. Twelve isolates, all non-motile, belonged to serogroups previously associated with human diseases, and 67% (8 of 12) were of only two serotypes (O91:H- and sorbitol-fermenting O157:H-). These results indicate that dairy cattle from the region surveyed may be a source of STEC potentially pathogenic for humans.  相似文献   

8.
Ten Escherichia coli O157 strains isolated from cattle and children in Poland were investigated by the use of molecular biological methods. All strains possessed the intimin and enterohaemolysin genes and harboured the genetic determinants for Stx2 toxin (five isolates), Stx1 toxin (two strains) or both (three isolates). The genetic relatedness of the strains was examined by restriction fragment length polymorphism (RFLP) of chromosomal DNA digested with Xbal and Notl. Nine closely related RFLP patterns were observed. Comparison of bovine and human E coli O157 isolates based on the analysis of Xbal and Notl digested profiles showed that all strains belonged to one genetic cluster. These results indicate that cattle must be considered as a possible source of human E coli O157 infection in Poland.  相似文献   

9.
Three-hundred and forty-five herds (17 swine, 122 dairy sheep, 124 beef and 82 dairy cattle) were investigated for prevalence of Shiga toxin-producing Escherichia coli (STEC). Rectal faecal samples were selectively enriched and then examined by immunodetection techniques (Immunomagnetic Separation with anti-E. coli O157 Dynabeads, ImmunoMagnetic cell Separation (IMS) and automated enzyme-linked fluorescent immunoassay using VIDAS) and polymerase chain reaction (PCR) (rfbE and fliC genes) to assess the prevalence of E. coli O157:H7. Prevalence of non-O157 STEC was estimated by PCR screening for stx genes of 10 lactose-positive colonies grown on MacConkey agar after enrichment. PCR was used on all STEC isolates to detect stx(1), stx(2), eaeA and E-hlyA genes. Both immunodetection methods showed a moderate-good level of agreement (kappa = 0.649) but IMS showed 87.5% complementary sensitivity. Prevalence of positive herds for E. coli O157:H7 was estimated at 8.7% for sheep and 3.8% for cattle, whereas all the porcine herds tested negative. Non-O157 STEC were also absent from swine, but were isolated more frequently from ovine (50.8%) than bovine herds (35.9%). Within-herd prevalences of excretion of E. coli O157:H7 established by individual testing of 279 sheep (six herds) and 30 beef cattle (one herd) were 7.3% and 6.7% respectively. PCR analysis of 49 E. coli O157:H7 and 209 non-O157 isolates showed a different distribution of virulence genes. All E. coli O157:H7 were stx(2) gene-positive, eaeA was detected in 95.9%, and the toxigenic profile stx(2)/eaeA/E-hlyA was present in 75.5% of the isolates. Among the non-O157 STEC, prevalence of eaeA was significantly lower (5.3%) and E-hlyA was present in 50.2% of the isolates but only sporadically associated with eaeA. stx(2) was predominant in non-O157 isolates from cattle, whereas in sheep the combination stx(1)/stx(2) was more prevalent. This study demonstrated the wide distribution of STEC in ruminant herds, which represent an important reservoir for strains that pose a potential risk for human infections.  相似文献   

10.
This study was conducted to determine the prevalence and characteristics of pathogenic Escherichia (E.) coli strains from diarrheic calves in Vietnam. A total of 345 E. coli isolates obtained from 322 diarrheic calves were subjected to PCR and multiplex PCR for detection of the f5, f41, f17, eae, sta, lt, stx1, and stx2 genes. Of the 345 isolates, 108 (31.3%) carried at least one fimbrial gene. Of these 108 isolates, 50 carried genes for Shiga toxin and one possessed genes for both enterotoxin and Shiga toxin. The eae gene was found in 34 isolates (9.8%), 23 of which also carried stx genes. The Shiga toxin genes were detected in 177 isolates (51.3%) and the number of strains that carried stx1, stx2 and stx1/stx2 were 46, 73 and 58, respectively. Among 177 Shiga toxin-producing E. coli isolates, 89 carried the ehxA gene and 87 possessed the saa gene. Further characterization of the stx subtypes showed that among 104 stx1-positive isolates, 58 were the stx1c variant and 46 were the stx1 variant. Of the 131 stx2-positive strains, 48 were stx2, 48 were stx2c, 11 were stx2d, 17 were stx2g, and seven were stx2c/stx2g subtypes. The serogroups most prevalent among the 345 isolates were O15, O20, O103 and O157.  相似文献   

11.
The virulence properties of Shiga toxin-producing Escherichia coli (STEC) strains isolated from diarrhoeic and non-diarrhoeic calves were compared. The strains were also tested for O157:H7, O111 and O26 serotypes, using PCR and conventional serotyping methods. E coli strains isolated from 297 faecal samples, from 200 diarrhoeic and 97 non-diarrhoeic calves, were screened by multiplex PCR assay for the stx1, stx2, eae and Ehly virulence genes. STECs were recovered from 8 per cent of diarrhoeic calves and 10.3 per cent of non-diarrhoeic calves. The predominant virulence gene profile was stx1/eae/Ehly (47.3 per cent) among isolates from diarrhoeic calves and eae/Ehly (36.8 per cent) among isolates from non-diarrhoeic calves. Among three tested serogroups, the predominant serogroup was O26 (18.4 per cent), and O157:H7 was not detected. Intimin subtyping by restriction fragment length polymorphism analysis revealed only three intimin subtypes (β, γ and ). A significant difference was observed in the distribution of Int- between two groups. Int- was present in 50 per cent of the isolates from diarrhoeic calves and in 11.1 per cent of the isolates from non-diarrhoeic calves; this difference was statistically significant (P=0.01).  相似文献   

12.
Faecal samples from 76 diarrhoeic calves belonging to 36 farms located in the Pampas plain, Argentina, were examined for Shiga toxin-producing Escherichia coli (STEC). A total of 15 STEC strains were isolated from 12 (15.8%) calves which came from six different farms. All stx positive strains assayed by PCR were also positives in the Vero cell cytotoxicity test. The majority (60.0%) of the STEC strains carried the stx(1) gene. Twelve (80.0%) of the STEC isolates which belonged to serotypes O5:H- (n = 4), O26:H11 (n = 4), O26:H- (n = 1), O111:H- (n = 2), and O123:H38 (n = 1) were also enterohaemolysin (EHly) positive and carried the gene encoding for intimin (eae). All the stx positive strains were negative for the bfpA gene. Localized adherence to HEp-2 cells were observed in 83.3% of the eae+ STEC strains. STEC belonging to serotype O5:H- showed atypical biochemical properties, including urease production. Urease was also produced by two strains belonging to serotypes O153:H? and non-typeable, respectively. Resistance to three or more antibiotics was observed in 12 (80.0%) of the STEC isolates. Most of the serotypes of STEC recovered in this survey carried virulence traits that are associated with increased human and bovine pathogenicity. The present study shows that highly virulent STEC strains are being shed by diarrhoeic calves from farms located in a high incidence area of human STEC infections.  相似文献   

13.
A total of 156 Shiga-like toxin producing Escherichia coli (STEC) were isolated from fecal samples of Korean native (100/568, 18%) and Holstein dairy cattle (56/524, 11%) in Korea between September 2010 and July 2011. Fifty-two STEC isolates (33%) harbored both of shiga toxin1 (stx1) and shiga toxin2 (stx2) genes encoding enterohemolysin (EhxA) and autoagglutinating adhesion (Saa) were detected by PCR in 83 (53%) and 65 (42%) isolates, respectively. By serotyping, six STEC from native cattle and four STEC from dairy cattle were identified as O-serotypes (O26, O111, O104, and O157) that can cause human disease. Multilocus sequence typing and pulsed-field gel electrophoresis patterns highlighted the genetic diversity of the STEC strains and difference between strains collected during different years. Antimicrobial susceptibility tests showed that the multidrug resistance rate increased from 12% in 2010 to 42% in 2011. Differences between isolates collected in 2010 and 2011 may have resulted from seasonal variations or large-scale slaughtering in Korea performed to control a foot and mouth disease outbreak that occurred in early 2011. However, continuous epidemiologic studies will be needed to understand mechanisms. More public health efforts are required to minimize STEC infection transmitted via dairy products and the prevalence of these bacteria in dairy cattle.  相似文献   

14.
Shiga toxin-producing Escherichia coli (STEC) are a public health concern. Bacterial culture techniques commonly used to detect E. coli O157:H7 will not detect other STEC serotypes. Feces from cattle and other animals are a source of O157:H7 and other pathogenic serotypes of STEC. The objective of this study was to estimate the pen-level prevalence of Shiga toxins and selected STEC serotypes in pre-slaughter feedlot cattle. Composite fecal samples were cultured and a polymerase chain reaction (PCR) was used to detect genes for Shiga toxins (stx1 and stx2) and genes for O157:H7, O111:H8, and O26:H11 serotypes. Evidence of Shiga toxins was found in 23 pens (92%), O157:H7 in 2 (8%), O111:H8 in 5 (20%), and O26:H11 in 20 (80%) of the 25 pens investigated. Although pen-level prevalence estimates for Shiga toxins and non-O157 serotypes seem high relative to O157:H7, further effort is required to determine the human health significance of non-O157 serotypes of STEC in feedlot cattle.  相似文献   

15.
Four hundred and twenty-two calves were examined for intestinal carriage of Shiga toxin-producing Escherichia coli O157:H7 using conventional plating. Two (0.5%) E. coli O157 were recovered. They were compared with 96 Argentine strains of different origin by pulsed-field gel electrophoresis, phage typing and PCR-RFLP of stx2 genes. One strain isolated from a calf, was closely related with 18 strains of clinical origin.  相似文献   

16.
Using PCR techniques Shiga toxin-producing strains of Escherichia coli were isolated from the faeces of 45 out of 101 healthy sheep. These strains were serotyped and found to include O5:H-, O91:H- and O163:H19, which had previously been reported as being associated with human disease including haemolytic uraemic syndrome.  相似文献   

17.
Shiga toxin-producing Escherichia coli (STEC) are an important group of emerging pathogens, with ruminants recognised as their main natural reservoir. The aim of this work was to establish the prevalence of non-O157 STEC in free-ranging wild ruminants in the Extremadura region of Spain and to characterise them phenogenotypically. Faecal samples were collected from 243 wild ruminants, including Cervus elaphus, Capreolus capreolus, Dama dama and Ovis musimon and were examined for STEC using both phenotypic (Vero cells) and genotypic (PCR and PFGE) methods.Shiga toxin-producing Escherichia coli were isolated from 58 (23.9%) of the samples and a total of 65 isolates were characterised. A PCR method indicated that 11 (16.9%) strains carried the stx1 gene, 44 (67.7%) carried the stx2 gene and 10 (15.4%) carried both these genes. The ehxA gene was detected in 37 (57%) of the isolates but none contained either the eae or saa genes. The isolates were from a total of 12 ‘O’ serogroups, although 80% were restricted to the O2, O8, O128, O146, O166 and O174 serogroups. The most commonly isolated STEC bacteria, which were from the O146 serogroup, exhibited a high degree of polymorphism as indicated by PFGE. Shiga toxin-producing Escherichia coli isolates of serogroups O20, O25, O166, O171, O174 and O176 had not previously been found in wild ruminants. This is the first study to confirm that wild ruminants in Spain are a reservoir of STEC and are thus a potential source of human infection.  相似文献   

18.
Fecal samples from 67 3–5-months-old calves with diarrhea were screened for the presence of shiga toxin-producing Escherichia coli (STEC). Several accessory virulence factors genes were also tested. Among 192 E.coli isolates tested, 15 (7.6%) were found to harbour the shiga toxin 1 or 2 (stx1 or stx2) genes. The stx2-carrying samples were further subtyped by PCR for the stx2c, stx2d, and stx2e toxin variants. It was shown that stx2-positive bacteria mainly possessed the stx2c shiga toxin type gene. The enterohemolysin (hlyA) and intimin (eae) genes were found in seven (46.7%) STEC strains whereas the cytotoxic necrotizin factor 1 and 2 or the P fimbrial genes were detected in two isolates only. This study confirmed that calves are a reservoir of STEC strains (with all pathogenicity genes) that may be virulent for humans.  相似文献   

19.
The role of birds as sources of Shiga toxin-and intimin-producing Escherichia coli was studied. Fecal samples from live gulls (n=86), pigeons (n=33) and broiler chickens (n=199) from 23 flocks were analyzed for stx and eae by PCR. No stx positive samples were detected. In contrast, eae E. coli were highly prevalent among gulls (40%), and was also found in pigeons (7%) and chickens (57% of the flocks contaminated). The eae positive isolates were analyzed genetically and O-serogrouped. One isolate from a pigeon was found to have stx (2f). The isolates of gulls differed from those of pigeons and chickens, and all eae E. coli isolates from birds differed from human pathogenic strains by the lack of EHEC-hlyA and bfp/EAF as well as distribution of O-serogroups. Thus, birds cannot be regarded as important carriers of zoonotic stx or eae E. coli in Finland.  相似文献   

20.
The aims of this study were to investigate prevalence, O-genotype, and virulence gene profile including Shiga toxin (Stx) 2 gene-subtype of Stx-producing Escherichia coli (STEC) in beef cattle from the Bahía Blanca in Argentina. Rectal swabs were collected from 283 beef cattle in 2012. stx genes were detected in 90 (32%) out of the 283 rectal swabs by stx gene-specific PCR assay. The positive cases were 13 with stx1, 58 with stx2, and 19 with both stx1 and stx2. Among 90 stx gene-positive samples, 45 STEC strains were isolated, which included 3 stx1, 34 stx2, and eight stx1 and stx2 genes positive isolates. O-genotyping grouped 45 STEC strains into 19 different O-genotypes such as Og8, Og145, Og171, Og185 (4 from each), Og22, Og153, Og157 (3 from each) and others. Various stx2 gene-subtypes were identified in 42 STEC strains: 13 positive cases for stx2a, 11 for stx2c, 3 for stx2g, 10 for stx2a and stx2d, 4 for stx2a and stx2c, and 1 for stx2b, stx2c and stx2g. efaI gene, generally prevalent in clinical strains, was detected in relatively high in the STEC strains. These data suggest that stx2a and stx2c were distributed not only in O145 and O157 but also in minor O-genotypes of STEC in Argentina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号