首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The discrepancy between the magnetic hysteresis properties of magnetite crystals that are precipitated from solution (<0.3 micrometer) and of crushed sifted grains (>0.3 micrometer) is not an inherent property of magnetite but is caused by the highly stressed state of crushed material and by adhering finer fragments. The size trends of magnetic properties exhibited by submicrometer-size precipitated grains continue in the size range from 1 micrometer to 1 millimeter in a set of hydrothermally recrystallized magnetite crystals. Coercive forces of these narrowly sized crystals follow a power law over a wide size range (0.1 micrometer to 1 millimeter) as predicted by theory. Dislocation etch pits show similar dislocation densities for hydrothermally grown (3 x 10(10) meter (-2)) and natural (1 x 10(10) meter(-2)) magnetite crystals. Hysteresis parameters of hydrothermally grown crystals are similar to those of natural crystals but are about one-fifth of those for crushed grains.  相似文献   

2.
Metallic filaments with submicrometer diametere have been fabricated. Standard diffraction techniques with conventional x-ray sources were unsuccessful in identifying the structure of these materials. However, with the use of synchrotron radiation produced on a wiggler beam line, diffraction data were obtained in measurement periods as short as 10 milliseconds. Two cylindrical single crystals of bismuth were studied, each with a diameter of 0.22 +/- 0.02 micrometer. The volume of sample illuminated for these measurements was 0.38 cubic micrometer, less than 0.5 femtoliter. The crystals are grown in glass capillaries, and, because bismuth expands on solidification, they are under a residual hoop stress. The crystallographic data indicate the presence of a linear compressive strain of about 2 percent, which is assumed to be the result of a residual stress of about 2 gigapascals.  相似文献   

3.
Sample dimensions influence strength and crystal plasticity   总被引:1,自引:0,他引:1  
When a crystal deforms plastically, phenomena such as dislocation storage, multiplication, motion, pinning, and nucleation occur over the submicron-to-nanometer scale. Here we report measurements of plastic yielding for single crystals of micrometer-sized dimensions for three different types of metals. We find that within the tests, the overall sample dimensions artificially limit the length scales available for plastic processes. The results show dramatic size effects at surprisingly large sample dimensions. These results emphasize that at the micrometer scale, one must define both the external geometry and internal structure to characterize the strength of a material.  相似文献   

4.
Compounds with strong thermodynamic affinity for carbon dioxide (CO(2)) have been designed and synthesized that dissolve in CO(2), then associate to form gels. Upon removal of the CO(2), these gels produced free-standing foams with cells with an average diameter smaller than 1 micrometer and a bulk density reduction of 97 percent relative to the parent material.  相似文献   

5.
A liquid crystal system was used for the fabrication of a highly ordered composite material from genetically engineered M13 bacteriophage and zinc sulfide (ZnS) nanocrystals. The bacteriophage, which formed the basis of the self-ordering system, were selected to have a specific recognition moiety for ZnS crystal surfaces. The bacteriophage were coupled with ZnS solution precursors and spontaneously evolved a self-supporting hybrid film material that was ordered at the nanoscale and at the micrometer scale into approximately 72-micrometer domains, which were continuous over a centimeter length scale. In addition, suspensions were prepared in which the lyotropic liquid crystalline phase behavior of the hybrid material was controlled by solvent concentration and by the use of a magnetic field.  相似文献   

6.
Morphologic studies of single crystals of aragonite within Codiacean algae reveal characteristic crystal forms produced by two distinctly different modes of calcification. Diagnostic serrated crystals (1 micrometer in length) of aragonite originating within the extracellular sheaths of capitular filaments are incorporated into modern lime sediments and may serve as effective tracers for particles of algal origin. Intracellular calcification within Penicillus dumetosus, previously unueported, is represented by doubly terminated aragonite crystals ranging in size from 48 to 160 micrometers.  相似文献   

7.
Colloidal particles can form unexpected two-dimensional ordered colloidal crystals when they interact with surfactants of the opposite charge. Coulomb interactions lead to self-limited adsorption of the particles on the surface of vesicles formed by the surfactants. The adsorbed particles form ordered but fluid rafts on the vesicle surfaces, and these ultimately form robust two-dimensional crystals. This use of attractive Coulomb interaction between colloidal particles and surfactant structures offers a potential new route to self-assembly of ordered colloidal structures.  相似文献   

8.
A seeded growth method for the fabrication of high-permeance, high-separation-factor zeolite (siliceous ZSM-5, [Si96O192]-MFI) membranes is reported. The method consists of growing the crystals of an oriented seed layer to a well-intergrown film by avoiding events that lead to a loss of preferred orientation, such as twin overgrowths and random nucleation. Organic polycations are used as zeolite crystal shape modifiers to enhance relative growth rates along the desirable out-of-plane direction. The polycrystalline films are thin (approximately 1 micrometer) with single grains extending along the film thickness and with large in-plane grain size (approximately 1 micrometer). The preferred orientation is such that straight channels with an open diameter of approximately 5.5 angstroms run down the membrane thickness. Comparison with previously reported membranes shows that these microstructurally optimized films have superior performance for the separation of organic mixtures with components that have small differences in size and shape, such as xylene isomers.  相似文献   

9.
Yoon S  Dai H  Liu J  Lieber CM 《Science (New York, N.Y.)》1994,265(5169):215-218
Direct knowledge of crystal defects and their perturbation of magnetic flux lines is essential to understanding pinning and to devising approaches that enhance critical currents in superconductors with high critical temperatures (T(c)). Atomic force microscopy was used to simultaneously characterize crystal defects and the magnetic flux-line lattice in single crystals of Bi(2)Sr(2)CaCu(2)O(8). Images show that surface defects, which are present on all real samples, pin the flux-line lattice. Above a critical height, the pinning interaction is sufficiently strong to form grain boundaries in the bulk flux-line lattice. These results elucidate the structure of the defects that pin flux lines and demonstrate that surface pinning, through the formation of grain boundaries, can determine the bulk flux-line lattice structure in high-T(c) materials. The implications of these results to the bulk flux-line lattice structure observed in previous experiments and to enhancing critical currents are discussed.  相似文献   

10.
The synthesis of ordered mesoporous metal composites and ordered mesoporous metals is a challenge because metals have high surface energies that favor low surface areas. We present results from the self-assembly of block copolymers with ligand-stabilized platinum nanoparticles, leading to lamellar CCM-Pt-4 and inverse hexagonal (CCM-Pt-6) hybrid mesostructures with high nanoparticle loadings. Pyrolysis of the CCM-Pt-6 hybrid produces an ordered mesoporous platinum-carbon nanocomposite with open and large pores (>/=10 nanometers). Removal of the carbon leads to ordered porous platinum mesostructures. The platinum-carbon nanocomposite has very high electrical conductivity (400 siemens per centimeter) for an ordered mesoporous material fabricated from block copolymer self-assembly.  相似文献   

11.
Heath JR 《Science (New York, N.Y.)》1992,258(5085):1131-1133
A liquid-solution-phase technique for preparing submicrometer-sized silicon single crystals is presented. The synthesis is based on the reduction of SiCl(4) and RSiCl(3) (R = H, octyl) by sodium metal in a nonpolar organic solvent at high temperatures (385 degrees C) and high pressures (> 100 atmospheres). For R = H, the synthesis produces hexagonal-shaped silicon single crystals ranging from 5 to 3000 nanometers in size. For R = octyl, the synthesis also produces hexagonal-shaped silicon single crystals; however, the size range is controlled to 5.5 +/- 2.5 nanometers.  相似文献   

12.
Many ordered intermetallic alloys have attractive high-temperature properties; however, low ductility and brittle fracture limit their use for structural applications. The embrittlement in these alloys is mainly caused by an insufficient number of slip systems (bulk brittleness) and poor grain-boundary cohesion. Recent studies have shown that the ductility and fabricability of ordered intermetallics can be substantially improved by alloying processes and control of microstructural features through rapid solidification and thermomechanical treatments. These results demonstrate that the brittleness problem associated with ordered intermetallics can be overcome by using physical metallurgical principles. Application of these principles will be illustrated by results on Ni(3)Al and Ni(3)V-Co(3)V-Fe(3)V. The potential for developing these alloys as a new class of high-temperature structural materials is discussed.  相似文献   

13.
Ultrasonic composite oscillator measurements of the mechanical relaxation in RBa(2)Cu(3)O(7-8) arising from oxygen hopping in the basal chain layer show enhancements in oxygen mobility of 20, 50, and 100 times for R = gadolinium, neodymium, and lanthanum, respectively, above that for R = yttrium. The use of the larger rare earths offers a practical solution to the major problem of slow oxygen diffusion in single crystals and bulk, dense material for wires and melt-textured monolithic bodies.  相似文献   

14.
Crystallization is an important process in a wide range of scientific disciplines including chemistry, physics, biology, geology, and materials science. Recent investigations of biomineralization indicate that specific molecular interactions at inorganic-organic interfaces can result in the controlled nucleation and growth of inorganic crystals. Synthetic systems have highlighted the importance of electrostatic binding or association, geometric matching (epitaxis), and stereochemical correspondence in these recognition processes. Similarly, organic molecules in solution can influence the morphology of inorganic crystals if there is molecular complementarity at the crystal-additive interface. A biomimetic approach based on these principles could lead to the development of new strategies in the controlled synthesis of inorganic nanophases, the crystal engineering of bulk solids, and the assembly of organized composite and ceramic materials.  相似文献   

15.
Sea urchin skeletal elements are composed of single crystals of calcite. Unlike their synthetic counterparts, these crystals do not have well-developed cleavage and are consequently much more resistant to fracture. This phenomenon is due in part to the presence of acidic glycoproteins occluded within the crystals. By means of x-ray diffraction with synchrotron radiation, it is shown that the presence of the protein in synthetic calcite only slightly decreases the coherence length but significantly increases the angular spread of perfect domains of the crystals. In biogenic calcite, the coherence length is 1/3 to 1/4 as much as that in synthetic calcite and the angular spread is 20 to 50 times as wide. It is proposed that the presence of macromolecules concentrated at mosaic boundaries that are oblique to deavage planes is responsible for the change in fracture properties. These results may be important in the material sciences, because of the unusual nature of this material, namely, a composite based on the controlled intercalation of macromolecules inside single-crystal lattices.  相似文献   

16.
Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules.  相似文献   

17.
Protein crystal growth in microgravity   总被引:3,自引:0,他引:3  
The crystals of most proteins or other biological macromolecules are poorly ordered and diffract to lower resolutions than those observed for most crystals of simple organic and inorganic compounds. Crystallization in the microgravity environment of space may improve crystal quality by eliminating convection effects near growing crystal surfaces. A series of 11 different protein crystal growth experiments was performed on U.S. space shuttle flight STS-26 in September 1988. The microgravity-grown crystals of gamma-interferon D1, porcine elastase, and isocitrate lyase are larger, display more uniform morphologies, and yield diffraction data to significantly higher resolutions than the best crystals of these proteins grown on Earth.  相似文献   

18.
A synthetic pathway is described to construct "in bulk" two-dimensional (2D) polymers shaped as molecular sheets. A chiral oligomeric precursor is used that contains two reactive sites, a polymerizable group at one terminus and a reactive stereogenic center near the middle of the molecule. The bulk reaction yields bilayer 2D polymers of molecular weight in the order of millions and a monodisperse thickness of 50.2 angstroms. The 2D molecular objects form through molecular recognition by the oligomers, which self-organize into layers that place the reactive groups within specific planes. The oligomers become catenated by two different stitching reactions involving the reactive sites. At room temperature, stacks of these molecular objects can organize as single crystals and at higher temperatures melt into smectic liquid crystals. Nonlinear optical experiments reveal that solid films containing the 2D polymers form structures that are thermally and temporally more stable than those containing analogous 1D polymers. This observation suggests that the transformation of common polymers from a 1D to a 2D architecture may produce generations of organic materials with improved properties.  相似文献   

19.
Micropatterning of single crystals for technological applications is a complex, multistep process. Nature provides alternative fabrication strategies, when crystals with exquisite micro-ornamentation directly develop within preorganized frameworks. We report a bio-inspired approach to growing large micropatterned single crystals. Micropatterned templates organically modified to induce the formation of metastable amorphous calcium carbonate were imprinted with calcite nucleation sites. The template-directed deposition and crystallization of the amorphous phase resulted in the fabrication of millimeter-sized single calcite crystals with sub-10-micron patterns and controlled crystallographic orientation. We suggest that in addition to regulating the shape, micropatterned frameworks act as sites for stress and impurity release during the amorphous-to-crystalline transition. The proposed mechanisms may have direct biological relevance and broad implications in materials synthesis.  相似文献   

20.
Aircraft measurements were made of trace gases, atmospheric particles, and condensed acid volatiles in the plume of El Chichón volcano, Chiapas, Mexico, in November 1982. Hydrogen sulfide was the primary gaseous sulfur species in the plume at the time of collection. Concentrations of 28 elements were determined by neutron activation analysis of particulate material from the plume. Rates of trace element emission to the atmosphere for each species were estimated by normlization to the simultaneously determined total sulfur emission rate. The volatile elements sulfur, chlorine, arsenic, selenium, bromine, antimony, iodine, tungsten, and mercury were enriched relative to bulk pyroclastic material by factors of 60 to 20,000. Arsenic, antimony, and selenium were associated predominantly with small (>/= 3 micrometer) particles. Calcium and sodium were present almost exclusively on larger particles and aluminum and manganese were bimodally distributed. Ashladen particulate material injected into the stratosphere during the early violent eruptions was enriched by factors of 10 to 30 relative to ash in some of the same elements observed in the quiescent plume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号