首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of different organic composts on the suppression of wilt disease of spinach caused by Fusarium oxysporum f. sp. spinaciae was evaluated in a continuous cropping system in both containers and in microplot field trials. Test soils infested with the pathogen were amended with wheatbran, wheatbran and sawdust, coffee grounds, chicken manure, or mixture of different composts with and without 5% (w/w) crab shell powder either once (5%, w/w) or continuously (2.5%) into the test soils infested with the pathogen. In the container trials, the soil amended with composts became suppressive to disease development on the second and third cropping. The suppressive effect was notable in the soil amended with the mixture of compost with and without crab shell powder. The coffee compost lowered soil pH but became suppressive to the disease after modifying the soil pH. In the field trial using the mixture of the different composts containing 5% crab shell powder, a combination of 5% before the first cropping and 2.5% every second cropping gave stable disease control and promoted plant growth. After compost amendment, populations of fungi, bacteria and actinomycetes as measured by dilution plate counting and the total microbial activity as evaluated by fluorescein diacetate hydrolysis increased and population of the pathogen gradually decreased. These phenomena were especially notable in soils amended with the mixture of different composts. These results indicate that diversity in the organic materials promotes higher microbial activity and population in the soil thereby enhancing disease suppressiveness.  相似文献   

2.
Fusarium wilt is now a major disease of carnation crops worldwide. Methyl bromide, which is used to remedy it, is environmentally unsafe. An alternative approach integrated into biological control is to grow crops in suppressive media. Suppressiveness of seven plant growth media to Fusarium oxysporum f. sp. dianthi was evaluated in bioassays with carnation (Dianthus cariophyllus) cv. Medea. These media were: (1) grape marc compost, (2) cork compost, (3) olive oil husk + cotton gin trash composted and mixed with rice husk, (4) spent mushroom compost mixed with peat, (5) coir fibre, (6) light peat and (7) vermiculite. In order to look for carnation Fusarium wilt suppressiveness indicators, growth medium pH and β-glucosidase activity were evaluated. Furthermore, F. oxysporum populations were measured in plant growth media at the beginning and end of bioassays. The compost media showed a range of suppressiveness in comparison with peat. Grape marc compost was the most effective plant growth medium in suppressing carnation Fusarium wilt. On the other hand coir fibre, peat and vermiculite were conducive for this disease. β-glucosidase activity and pH were positively correlated with disease severity as in other reports for tomato. Therefore, these two parameters are good indicators for carnation Fusarium wilt suppressiveness, and possibly for other F. oxysporum pathosystems. All composts showed similar F. oxysporum populations at the end of the bioassays to peat and vermiculite.  相似文献   

3.
ABSTRACT Fusarium wilts are economically important diseases for which there are no effective chemical control measures. However, biological control and fertility management are becoming efficient alternatives for controlling this disease. Growth media formulated with composts that are able to suppress Fusarium wilt of tomato provide a control system that integrates both strategies. The aim of this study was to predict Fusarium wilt suppression of growth media using abiotic and biotic variables. Grape marc compost was the most effective medium used to suppress Fusarium wilt. Cork compost was intermediate, and light peat and expanded vermiculite were the most conducive growth media. The growth media evaluated were in a pH range of 6.26 to 7.97. Both composts had high beta-glucosidase activity. When pH and beta-glucosidase activity were taken into account as predictive variables, more than 91% of the variation in severity of Fusarium wilt was explained. This relationship illustrates the effect of nutrient availability and the degree of microbiostasis, two key factors in this pathosystem. Microbial populations involved in suppressiveness were cellulolytic and oligotrophic actinomycetes, fungi, and the ratios cellulolytic actinomycetes/cellulolytic bacteria, oligotrophic bacteria/copiotrophic bacteria, and oligotrophic actinomycetes/oligotrophic bacteria. Based on community level physiological profiles, different community structures were evident among growth media evaluated.  相似文献   

4.
Survival of a heat-tolerant pathogen Macrophomina phaseolina, causing dry root rot of clusterbean, was studied by incorporation and retrieval of infected residue samples at various stages of the composting process of pearl millet (Pennisetum glaucum) and clusterbean (Cyamopsis tetragonoloba) residues. During the heating phase, temperatures varied from 48–51°C at 30cm and 60–62°C at 60cm depth in compost pits. Reduction in survival of M. phaseolina propagules (13–23%) was significantly higher in the residues enriched with 4% urea-N and kept at 60cm compared to 2% urea-N and at 30cm. However, a heat phase (48–62°C) was not enough to completely eradicate M. phaseolina propagules from infected residues. Further reductions (54–61%) in survived propagules were achieved by sub-lethal temperatures (48–53°C) when moistened compost materials were exposed to heat during summer days. Beneficial effects of composts were ascertained on dry root rot intensity, seed yield of clusterbean and densities of M. phaseolina, Nitrosomonas and antagonists in soil. In a two-year field study, all the composts significantly reduced plant mortality due to dry root rot and increased the yield of clusterbean. The highest disease suppression and yield promotion were recorded in soil amended with pearl millet compost and cauliflower leaf residue compost, respectively. Soil amendment with compost also lead to a significant reduced density of M. phaseolina and an increased density of antagonistic actinomycetes, lytic bacteria and Nitrosomonas. Among composts, greater potential of cauliflower compost in enhancing population of antagonists in soil was discernible.  相似文献   

5.
The influence of site on resistance of grapevine (cv. Chasselas) to Plasmopara viticola was evaluated. Grapevine leaves from three vineyards in the region of Lake Neuchatel (Switzerland) were tested for their susceptibility to P. viticola in the lab in five successive years (2004–2008), and the expression levels of four selected defence-related genes (Glucanase, Lipoxygenase 9, 9-cis epoxycarotenoid dioxygenase, Stilbene synthase) were studied in 1 year. In all 5 years of examination, differences between sites were substantial. In four out of 5 years, plants from site Hauvernier were much less susceptible to P. viticola than plants from site Auvernier. In another year, differences were less pronounced but still significant for one leaf age. Susceptibility of plants from a third site (Concise) varied from year to year. Differences in the genetic background were excluded by microsatellite analysis. Differences in susceptibility were mirrored in the constitutive expression pattern of four defence-related genes, with samples from the Hauterive site clearly separated from samples of the other two sites in redundancy analysis. Furthermore, it was evaluated whether site-specific resistance can be modulated by agronomic practices such as the application of organic amendments. In two commercial vineyards (cv. Pinot noir), soils had either not (control) or yearly (compost) been amended with a compost for the last 9 years. Leaves from plants grown in any of the two treatments did not differ in their susceptibility to P. viticola in both years of examination. Additionally, under controlled conditions, none of 19 different composts amended to the substrate of grapevine seedlings or cuttings affected their susceptibility to P. viticola, but 8 out of 19 composts reduced severity in the control bioassay Arabidopsis thalianaHyaloperonospora arabidopsidis, indicating that a modulation of site-specific susceptibility of grapevine plants by organic amendments is at the very least, difficult.  相似文献   

6.
Chen MH  Nelson EB 《Phytopathology》2008,98(9):1012-1018
Composts are known for their suppressive properties toward many different seed- and root-infecting pathogens and diseases. Although disease and pathogen suppression induced by composts is believed to be mediated by microbial activities, the nature of the microbial species and processes responsible for suppressiveness remain unknown. We demonstrated previously that seed-colonizing microbial consortia from leaf compost could explain the observed levels of Pythium ultimum-induced damping-off suppression on cotton. The aim of the present work was to determine whether seed-colonizing microbial consortia could explain Pythium damping-off suppression in municipal biosolids compost on three different plant species. Significant levels of disease suppression were observed on cucumber, wheat, and pea at water potentials of -2 kPa. The suppression of damping-off on cucumber and wheat could be eliminated by autoclaving the compost prior to sowing. High levels of suppressiveness were expressed both on cucumber and on wheat seed surfaces within 8 h of sowing. However, the expression of damping-off suppression on the surface of pea seeds was inconsistent and highly variable. Our results demonstrate that compost-induced suppression of P. ultimum damping-off of cucumber and wheat can be explained by the microbial consortia colonizing seeds within 8 h of sowing. These results further suggest that disease suppression in composts is related to microbial species that interact with the pathogen in its infection court and not in the bulk compost.  相似文献   

7.
Biological control of plant diseases using soil amendments such as animal manure and composted materials can minimize organic waste and has been proposed as an effective strategy in crop protection. In this study, 35 organic amendments (OAs) and 16 compost mixtures were evaluated against Verticillium dahliae by assessing both the antagonistic effect on the mycelial growth of two representative isolates of V. dahliae and the effect on the reduction of microsclerotia viability of the pathogen in naturally infested soil. Eleven OAs and five compost mixtures showed a consistent inhibition effect in in vitro sensitivity tests, with solid olive‐oil waste compost one of the most effective. Therefore, a bioassay with olive plants was conducted to evaluate the suppressive effect against V. dahliae of these selected OAs and compost mixtures. Significant reduction in the severity of the symptoms of V. dahliae indicates the potential use of grape marc compost (100% disease severity reduction) and solid olive‐oil waste, combined with other OAs. Microorganism mixtures and dairy waste OAs had a potential suppressive effect when they were combined with compost, showing a 73% and 63% disease severity reduction, respectively. A mixture of agro‐industrial waste with other biological control agents is a promising strategy against verticillium wilt of olive. To the authors' knowledge, this is the first report on the effectiveness of compost extracts (compost teas) on the inhibition of natural microsclerotia of V. dahliae, and also on verticillium wilt suppression in olive with solid olive‐oil waste.  相似文献   

8.
The susceptibility of intercrop species (Raphanus sativus, Brassica juncea, B. rapa, Sinapis alba and Phacelia tanacetifolia) to the sugar beet pathogen Rhizoctonia solani was investigated in vitro, in the greenhouse and in the field with artificial inoculation. Disease severity in subsequently cultivated sugar beet was monitored in the field. Differences in susceptibility between species were found to be consistent in all experimental systems. All intercrop species were susceptible to R. solani. Brassica rapa and R. sativus were less susceptible than P. tanacetifolia. Compared to fallow, the cultivation of B. rapa and R. sativus reduced disease severity in subsequently grown sugar beet (median ratings of up to 3·0 and 3·5, respectively, depending on environmental conditions). This resulted in higher white sugar yield compared to fallow (up to 210% and 157% for B. rapa and R. sativus, respectively). This study demonstrates that in vitro and greenhouse resistance tests are suitable systems to predict the effects of intercrop species susceptibility in the field on disease severity and white sugar yield in subsequently grown sugar beet. Intercrop breeding programmes might profit from fast and efficient screening tests to provide Rhizoctonia‐resistant intercrops as an additional control measure against R. solani in sugar beet.  相似文献   

9.
In an attempt to find a suitable alternative to the otherwise perilous chemical control strategy of disease management, the amino acid proline was evaluated for its efficiency to elicit resistance in pearl millet (Pennisetum glaucum (L.) R. Br.) against downy mildew disease caused bySclerospora graminicola (Sacc.) Schroet both under greenhouse and field conditions. Proline treatment to seeds at 50 mM concentration for 3 h, significantly enhanced the seed germination and seedling vigor of pearl millet in comparison with the control. The same concentration and duration of seed treatment protected the pearl millet plants from downy mildew by offering 58% protection under greenhouse and 67% protection under field conditions. Studies revealed that 3 days were required for proline-treated plants to develop resistance, which was systemic and was sustained throughout the life of the plants. Apart from disease protection, proline was also found effective in enhancing vegetative and reproductive growth of the plants, as evidenced by the increase in height, fresh weight, leaf area, tillering capacity, 1000-seed weight and grain yield in comparison with the control plants. http://www.phytoparasitica.org posting Oct. 3, 2004.  相似文献   

10.
The addition of species of Trichoderma to compost is a widespread technique used to control different plant diseases. The biological control activity of these species is mainly attributable to a combination of several mechanisms of action, which may affect the microbiota involved in the suppressiveness of compost. This study was therefore performed to determine the effect of inoculation of Trichoderma harzianum (T. harzianum) on compost, focusing on bacterial community structure (16S rRNA) and chitinase gene diversity. In addition, the ability of vineyard pruning waste compost, amended (GCTh) or not (GC) with T. harzianum, to suppress Fusarium wilt was evaluated. The addition of T. harzianum resulted in a high relative abundance of certain chitinolytic bacteria as well as in remarkable protection against Fusarium oxysporum comparable to that induced by compost GC. Moreover, variations in the abiotic characteristics of the media, such as pH, C, N and iron levels, were observed. Despite the lower diversity of chitinolytic bacteria found in GCTh, the high relative abundance of Streptomyces spp. may be involved in the suppressiveness of this growing media. The higher degree of compost suppressiveness achieved after the addition of T. harzianum may be due not only to its biocontrol ability, but also to changes promoted in both abiotic and biotic characteristics of the growing media.  相似文献   

11.
The synthetic 1-oxo-indanoyl-l-isoleucine methyl ester (Ind-Ile-Me) represents a highly active mimic of octadecanoic phytohormones, which are involved in plant defenses against pathogens and pests. Seed treatments and foliar spray with Ind-Ile-Me were tested for induced resistance against downy mildew disease caused by the phytopathogenic oomycete Sclerospora graminicola in pearl millet (Pennisetum glaucum) under greenhouse and field conditions. Under greenhouse conditions, a 50% protection level was achieved after seed treatment. Seed treatment in combination with foliar spray resulted in 60% protection. The induction of resistance was correlated with the enhanced activities of defense-related proteins such as phenylalanine-ammonia-lyase, peroxidase, and enhanced level of hydroxyproline-rich glycoproteins. Under field conditions, a maximum protection of 62% was recorded upon seed treatment along with foliar spray. Hence, it infers that Ind-Ile-Me can be used as a valuable protection compound at least in downy mildew disease management.  相似文献   

12.
Damping-off and stem rot disease-causing Sclerotium rolfsii has been reported as a destructive soil-borne pathogen of numerous crops, especially in the tropics and subtropics. Trials were conducted to test the efficacy of biocontrol agents alone or combined with Moringa oleifera leaf extracts for the control of the disease. In the laboratory, PDA was amended with Moringa leaf extract, and mycelial growth of S. rolfsii was measured. In the greenhouse and field, Trichoderma Kd 63, Trichoderma IITA 508 and Bacillus subtilis were evaluated as seed treatments, soil drench or sprinkle, separately or combined with Moringa leaf extracts. Percentage disease incidence, severity and control were recorded. In the laboratory, the higher the extract concentration the less the mycelial growth and no mycelial growth occurred on extract at 15 or 20 g leaves 10 ml−1 water. In the greenhouse, the highest disease control was observed at a Moringa extract concentration of 15 kg leaves 10 l−1 water (w/v). Seed treatments using Trichoderma Kd 63, and soil sprinkle using Trichoderma IITA 508 had a significantly (P = 0.05) higher effect on a disease incidence than Bacillus. Disease severity followed the same pattern. Moringa seed treatment combined with Trichoderma soil sprinkle resulted in significantly more than 94% and 70% disease control in the greenhouse and field, respectively, with significant yield increase in the field. This is the first report of Moringa leaf extract combined with Trichoderma as an integrated control for Sclerotium damping-off and stem rot of cowpea in the field.  相似文献   

13.
Xiao CL  Subbarao KV 《Phytopathology》2000,90(9):995-1004
ABSTRACT Cauliflower root and plant growth and Verticillium wilt development were evaluated under different moisture regimes in the presence or absence of V. dahliae. Treatments included two main plots (V. dahliae-infested and fumigated), two subplots (furrow and subsurface drip irrigation), and three sub-subplots (deficit, moderate, and excessive regimes) that were arranged in a split-split-plot design in the field. Soil cores with roots were periodically sampled at 5 and 25 cm distance from plants. Total roots in each soil core were extracted with a hydropneumatic root elutriator, and root length from each sample was determined with a digital image analysis system. Incidence and severity of Verticillium wilt, plant height, number of leaves, and dry weights of leaves and roots were determined on 10 plants sampled at 7- to 10-day intervals 1 month after cauliflower transplanting and continued until harvest. To evaluate the effects of Verticillium wilt-induced stress on cauliflower plants, stomatal resistance was measured in upper healthy and lower (or diseased) leaves. Root length density at 5 and 25 cm from plant was significantly (P < 0.05) higher in subsurface drip than in furrow irrigation. Root length density was significantly higher in excessive irrigation regime than in the other regimes. Concomitantly, there was higher wilt incidence and severity in excessive and moderate regimes than deficit regime regardless of the irrigation method. Plant height was affected by irrigation methods and deficit regime. Neither the method of irrigation nor the quantity of water affected the other variables. Stomatal resistance in lower diseased leaves was significantly higher in infested than in fumigated plots but it was not in the upper healthy leaves. In this study, cauliflower yield was not affected by V. dahliae and irrigation method, but the deficit irrigation regime resulted in reduced yield even though it suppressed wilt in cauliflower. Thus, higher moisture levels resulted in higher root length density in V. dahliae-infested plots that in turn lead to greater incidence of Verticillium wilt and severity. The pathogen also affected physiological processes such as hydraulic conductance of cauliflower leaves, but not shoot growth or yield under these experimental conditions.  相似文献   

14.
ABSTRACT The potential of a pulp and paper mill residues compost for the control of crown and root rot of greenhouse-grown tomato caused by Fusarium oxysporum f. sp. radicis-lycopersici was ultrastructurally investigated. Peat moss amended with compost substantially reduced disease-associated symptoms. Addition of Pythium oligandrum to either peat moss alone or peat moss amended with compost resulted in a considerable reduction in disease incidence compared with controls grown in peat moss alone. Histological and cytological observations of root samples from Fusarium-inoculated plants revealed that the beneficial effect of compost in reducing disease symptoms is associated with increased plant resistance to fungal colonization. One of the most prominent facets of compost-mediated induced resistance concerned the formation of physical barriers at sites of attempted fungal penetration. These structures, likely laid down to prevent pathogen ingress toward the vascular elements, included callose-enriched wall appositions and osmiophilic deposits around the sites of potential pathogen ingress. Invading hyphae, coated by the osmiophilic material, showed marked cellular disorganization. The use of the wheat germ agglutinin-ovomucoid-gold complex provided evidence that the wall-bound chitin was altered in severely damaged hyphae. A substantial increase in the extent and magnitude of the cellular changes induced by compost was observed when P. oligandrum was supplied to the potting substrate. This finding corroborates the current concept that amendment of composts with specific antagonists may be a valuable option for amplifying their beneficial properties in terms of plant disease suppression.  相似文献   

15.
The effect of different soil amendments and biological control agents on soil-borne root diseases that cause significant economic losses in organic and other soil-based tomato production systems (Pyrenochaeta lycopersici and Verticillium albo-atrum) was compared. Organic matter inputs (fresh Brassica tissue, household waste compost and composted cow manure) significantly reduced soil-borne disease severity (measured as increased root fresh weight) and/or increased tomato fruit yield, with some treatments also increasing fruit number and/or size. Soil biological activity also increased with increasing organic matter input levels and there were significant positive correlations between soil biological activity, root fresh weight and fruit yield. This indicates that one mechanism of soil-borne disease control by organic matter input may be increased competition by the soil biota. Chitin/chitosan products also significantly reduced soil-borne disease incidence and increased tomato fruit yield, number and/or size, but had no effect on soil biological activity. Biological control products based on Bacillus subtilis and Pythium oligandrum and commercial seaweed extract (Marinure) and fish emulsion (Nugro)-based liquid fertilisers had no positive effect on soil-borne disease incidence and fruit yield, number and size. The use of ‘suppressive’ organic matter inputs alone or in combination with chitin/chitosan soil amendments can therefore be recommended as methods to control soil-borne diseases in organic and other soil-based production systems.  相似文献   

16.
Tomato (Solanum lycopersicum) is the second most important vegetable crop in the world. Bacterial spot (BS) of tomato, caused by four species of Xanthomonas: X. euvesicatoria, X. vesicatoria, X. perforans and X. gardneri, results in severe loss in yield and quality due to defoliation and formation of lesions on fruits, respectively. Currently management practices do not offer effective control under conditions of high disease pressure. Thus, developing BS resistance is a critical priority for tomato growers in order to minimize crop losses. Sixty‐three advanced tomato breeding lines, heirlooms and wild tomato lines with diverse genetic backgrounds were screened under greenhouse and field conditions for BS resistance using X. perforans race T4, which was found to be a prevalent race in North Carolina. Race T4 isolate 9 was used to inoculate the plants by spraying, and disease severity was measured using the Horsfall–Barratt scale. Tomato lines 74L‐1W(2008), NC2CELBR, 081‐12‐1X‐gsms, NC22L‐1 (2008) and 52LB‐1 showed resistance to BS in the field and/or greenhouse trials. These lines were derived from S. pimpinellifolium L3707. Screening L3707 followed by development of a mapping population and mapping resistance genes might be useful for breeding resistance against BS in future breeding programmes.  相似文献   

17.
Effects of crop rotation between rice paddy fields and strawberry nurseries on the control of Verticillium wilt of strawberry were studied. For detecting Verticillium dahliae, the causal agent of Verticillium wilt, in soil, eggplant was used as an indicator plant. We were thus able to detect as low as 1 microsclerotium/g dry soil. In field surveys of Chiba and Hokkaido from 2000 to 2003, V. dahliae was detected in 9 of 10 upland fields but in none of 21 paddy-upland fields. In Hokkaido during 2000–2007, strawberry mother plants were planted, and plantlets were produced in upland and paddy-upland fields to assess V. dahliae infestation. Verticillium wilt of strawberry had never occurred in 72 tested paddy-upland fields, compared to 13.2–73.9% of plantlets infected with V. dahliae in upland fields. In a pot experiment in a greenhouse, two flooding treatments or two paddy rice cultivations suppressed Verticillium wilt symptoms on eggplant. In field experiments, one paddy rice cultivation in Chiba and two in Hokkaido prevented development of Verticillium wilt symptoms on eggplant. Verticillium wilt of strawberry was controlled completely with one paddy rice cultivation in infested fields in Chiba. In these field experiments, the number of microsclerotia of V. dahliae decreased under the flooding conditions for paddy rice cultivation. Based on the reduction in microsclerotia, a crop rotation system with paddy rice for 3 years (three times), green manure for 1 year, and strawberry nursery for 1 year was designed for Hokkaido.  相似文献   

18.
In an earlier study, treatment of radish seed with the bacteriumPseudomonas fluorescens WCS374 suppressed fusarium wilt of radish (Fusarium oxysporum f. sp.raphani) in a commercial greenhouse [Leemanet al., 1991b, 1995a]. In this greenhouse, the areas with fusarium wilt were localized or expanded very slowly, possibly due to disease suppressiveness of the soil. To study this phenomenon, fungi were isolated from radish roots collected from the greenhouse soil. Roots grown from seed treated with WCS374 were more abundantly colonized by fungi than were roots from nonbacterized plants. Among these were several species known for their antagonistic potential. Three of these fungi,Acremonium rutilum, Fusarium oxysporum andVerticillium lecanii, were evaluated further and found to suppress fusarium wilt of radish in a pot bioassay. In an induced resistance bioassay on rockwool,F. oxysporum andV. lecanii suppressed the disease by the apparent induction of systemic disease resistance. In pot bioassays with thePseudomonas spp. strains, the pseudobactin-minus mutant 358PSB did not suppress fusarium wilt, whereas its wild type strain (WCS358) suppressed disease presumably by siderophore-mediated competition for iron. The wild type strains of WCS374 and WCS417, as well as their pseudobactin-minus mutants 374PSB and 417PSB suppressed fusarium wilt. The latter is best explained by the fact that these strains are able to induce systemic resistance in radish, which operates as an additional mode of action. Co-inoculation in pot bioassays, ofA. rutilum, F. oxysporum orV. lecanii with thePseudomonas spp. WCS358, WCS374 or WCS417, or their pseudobactin-minus mutants, significantly suppressed disease (except forA. rutilum/417PSB and all combinations with 358PSB), compared with the control treatment, if the microorganisms were applied in inoculum densities which were ineffective in suppressing disease as separate inocula. If one or both of the microorganism(s) of each combination were applied as separate inocula in a density which suppressed disease, no additional suppression of disease was observed by the combination. The advantage of the co-inoculation is that combined populations significantly suppressed disease even when their individual population density was too low to do so. This may provide more consistent biological control. The co-inoculation effect obtained in the pot bioassays suggests that co-operation ofP. fluorescens WCS374 and indigenous antagonists could have been involved in the suppression of fusarium wilt of radish in the commercial greenhouse trials.Abbreviations CFU colony forming units - KB King's B - PGPR plant growth-promoting rhizobacteria - CQ colonization quotient  相似文献   

19.
The combined effects of soil solarization and application of compost of various maturity levels upon soil microbial activity were studied under field conditions during 2010–2012. Eight treatments were divided into solarized and non-solarized treatments, and each was either non-amended or annually amended with compost at 6 kg (DW) m-2. The composts were mature, partially mature, or immature. In all three tested parameters of microbial activity (respiration rate, heat output, and dehydrogenase activity) the immature compost showed higher activity than the other compost types. Soil samples were collected weekly in order to assess microbial activity, which was evaluated from measurements of soil respiration rate, heat output, and dehydrogenase activity. Significant and year-to-year reproducible differences in all three parameters were observed between soils amended with the three compost types. Some residual (carry-over) effects of previous-year treatments were obtained. Microbial activity decreased in both solarized and non-solarized treatments during the experimental period, probably because of increasing summer temperatures, but the decline was sharper in the solarized treatments probably due to oxygen deficiency under the tarp. Significantly higher activity was found in the treatments amended with the immature compost, both in the solarized and non-solarized treatments. This could be a result of the high level of dissolved organic matter in the immature compost, which enhanced microbial activity.  相似文献   

20.
The suppressive ability of three plant residue-based composts that could serve as components of soilless media for several vegetable crops was tested on four different formae speciales of Fusarium oxysporum: melonis, basilici, radicis-lycopersici and radicis-cucumerinum. The composts were prepared under controlled conditions from a mixture of separated cow manure (SCM) with orange peels (OP), wheat straw (WS), or dried tomato plants that had been removed from the greenhouse after the end of the season (TP). Disease development in melon, tomato and cucumber seedlings growing in the three composts was significantly less than that observed in peat. Plant inoculation was achieved by conidia produced in culture, conidia naturally produced on infected stems and soil inoculum produced by enriching the soil with infected tissues. Pathogen colonization of the roots and stems of infected melon plants grown in TP–SCM and OP–SCM composts was significantly lower than that of peat-grown plants. Sterilization by gamma irradiation reduced the suppressive capability of TP–SCM and OP–SCM composts, whereas it did not affect the disease development and final disease incidence in peat. Tested formae speciales exhibited differing decline rates of the conidia incorporated in the composts, compared with the rate in the peat control, which suggests that different mechanisms may be involved in the suppression of the different pathogens. The present study shows that composts based on plant-waste residues suppress diseases caused by different formae speciales of Fusarium oxysporum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号