首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
苯并[a]芘、菲在缢蛏体内的生物富集与释放   总被引:1,自引:0,他引:1  
李磊  沈新强  李超  王云龙  蒋玫  许高鹏 《水产学报》2015,39(7):998-1004
为了研究苯并[a]芘(Bap)、菲PHE在缢蛏体内的富集及释放过程的动力学特征,通过双箱动力学模型对富集(15 d)与释放(9 d)过程进行非线性曲线拟合,获得缢蛏对BaP、PHE的吸收速率常数k1、释放速率常数k2、生物富集因子BCF、平衡状态下生物体内BaP含量CAmax、生物学半衰期B1/2。结果显示,缢蛏对BaP的富集能力高于PHE,BaP增加幅度分别为0.45 ng/(kg·d)(40 μg/L实验组)、0.33 ng/(kg·d)(20 μg/L实验组)、0.23 ng/(kg·d)(10 μg/L实验组);PHE增加幅度分别为0.33 ng/(kg·d)(30 μg/L实验组)、0.25 ng/(kg·d)(20 μg/L实验组)、0.18 ng/(kg·d)(10 μg/L实验组)。BaP、PHE的富集、清水释放均为前期迅速,后期缓慢。缢蛏对BaP、PHE的k1范围分别为0.39~0.52,0.30~0.43,平均值分别为0.44和0.36,均随BaP、PHE暴露浓度的增大而减少;k2范围分别为0.001 6~0.001 7,0.002 8~0.003 3,平均值分别为0.001 6和0.003 0,无明显的变化趋势;BCF范围分别为243.96~306.28,105.73~130.85,平均值分别为268.18和118.57,均随BaP、PHE暴露浓度的增大而减少;CAmax范围分别为3 062.76~9 758.25 μg/kg,1 308.54~3 171.84 μg/kg,平均值分别为5 969.08和2 287.71 μg/kg;B1/2范围分别为407.73~433.22 d,210.68~248.06 d,平均值分别为421.20和232.04 d,均随BaP、PHE暴露浓度的增大而增大。  相似文献   

2.
贾彦  杜美荣  李文豪  姜娓娓  蔺凡  姚亮  吴玉萍  蒋增杰 《水产学报》2023,47(9):099308-099308
为了解单环刺螠生物扰动作用对沉积物-水界面氮磷扩散通量的影响及其持续性,于2020年11—12月,采用室内实验生态学的方法,设置低密度 (LD,500 尾/m2)、中密度 (MD,2 500 尾/m2)、高密度 (HD,8 300 尾/m2)处理组和1个对照组 (CO,0 尾/m2),进行了2 d为一个实验时段,为期20 d的模拟实验。结果显示,处理组溶解无机氮(DIN)扩散通量变化范围为10.6~765.3 μmol/(m2·d),与对照组相比,低、中、高处理组的DIN通量分别提高了57%、76%、88%。NH4+是DIN的主要贡献者,对DIN的贡献在低、中、高处理组中分别占55%、65%和80%。与对照组相比,低、中、高密度组的平均NH4+通量分别提高了39%、111%和257%,与低、中密度处理组平均NH4+通量相比,高密度处理组分别提高了43.7%和23.6%。在第2~10天,NH4+通量处于持续增加的趋势。处理组PO43−通量变化范围为−7.85~6.42 μmol/(m2·d),第2~6天,处理组PO43−通量持续增加。研究表明,单环刺螠的生物扰动能够持续地促进DIN由沉积物向水体中扩散,且存在明显的密度效应。研究结果将为深入认识单环刺螠在水层-底栖系统耦合过程中的生态作用提供基础数据。  相似文献   

3.
豆粕替代鱼粉对点篮子鱼生长性能的影响   总被引:5,自引:6,他引:5  
以豆粕替代鱼粉配置5组等氮(35%)等能(19.00 MJ/kg)饲料,豆粕∶鱼粉替代比分别为0∶1(D1)、1∶2(D2)、1∶1(D3)、2∶1(D4)、1∶0(D5),研究豆粕蛋白对体重(104.64±2.76) g点篮子鱼生长性状、体成分、生物学指标的影响,从而确定点篮子鱼饵料中最佳的动植物蛋白比。试验在室内圆锥形孵化桶中进行,分5个处理,每个处理3个重复,每个重复25尾鱼。49 d养殖试验结果表明,饲料中豆粕含量对点篮子鱼生长有显著影响,特定生长速率(SGR)、增重率(WG)、摄食率(FI)与替代比成负相关,对照组(D1)[11.87(100 g)/d]FI显著高于全豆粕组(D5)[5.81(100 g)/d]。饲料系数(FCR)与替代比成正相关,D5组FCR高达2.97。饲料中豆粕含量水平对肌肉粗蛋白与水分含量无显著影响,对全鱼粗蛋白和脂肪影响显著,粗蛋白在D5组取得最小值19.11%。肝脏蛋白含量随饲料中豆粕含量增加呈先增加后降低趋势,高豆粕含量组肝脏脂肪含量显著低于低豆粕组。蛋白替代对点篮子生物学指标影响较小。综合考虑SGR、FCR、FI等指标,点篮子鱼饲料中豆粕替代鱼粉比不宜大于1∶2。但从肌肉营养品质方面考虑,替代比可以达到2∶1。  相似文献   

4.
淀山湖光泽黄颡鱼食性研究   总被引:2,自引:0,他引:2  
于2009年8月至2010年7月在上海市淀山湖采集光泽黄颡鱼胃含物样品,采用传统镜检法对其食性进行研究。结果表明:淀山湖光泽黄颡鱼全年均有摄食,且摄食强度存在显著的季节变化,其中饱满指数排序:秋 > 春 > 冬 > 夏,春季空腹率显著高于其他季节;共鉴定其饵料生物7大类(11小类),聚类分析表明,出现率(F%)、数量百分比(N%)和相对重要性指数(IRI%)在衡量食物对光泽黄颡鱼的重要性方面表现一致,重量百分比(W%)与前三者存在显著差异,综合以上4种指数显示,底栖甲壳类、多毛类和水生昆虫是光泽黄颡鱼的主要食物来源;选用W%对其食性进行时空比较,聚类分析显示其冬季食物组成与其他季节存在显著差异,而站点间差异不明显,均以底栖甲壳类为绝对食物来源;食物组成Shannon-Weiner多样性存在明显的空间差异,高低依次为S5 > S3 > S4 > S2 > S1 > S6,研究认为光泽黄颡鱼食性具有较强的地域性和可塑性。  相似文献   

5.
为研究饲料中精氨酸(Arg)、赖氨酸(Lys)水平及其相互作用对大菱鲆生长、体成分和肌肉氨基酸含量的影响,本实验以初始体质量为(18.48±0.16)g的大菱鲆作为研究对象,采用3×3双因素设计,在基础饲料中分别添加Arg(0%、0.9%和2.0%)和Lys(0%、1.19%和2.39%),配制成9种等氮等能的实验饲料,每个处理设3个重复,每重复30尾鱼,养殖周期为8周。实验结果表明,当饲料中Lys添加量为1.19%时,大菱鲆增重率和特定生长率较其他两种添加量组显著升高(P < 0.05),但精氨酸的添加对其影响不显著且与赖氨酸之间不存在交互作用(P > 0.05)。饲料效率、蛋白质效率、蛋白质保留率和鱼体蛋白质含量受饲料中Lys和Arg添加量的交互影响(P < 0.05),在Arg和Lys添加量分别为0.9%和1.19%时,数值最高,显著高于赖氨酸未添加组和高添加组(P < 0.05)。全鱼粗脂肪、水分、灰分和形体指标不受Arg和Lys的交互作用影响(P > 0.05)。粗脂肪和水分随Lys的添加量升高而显著降低(P < 0.05);肝体比和脏体比均随饲料中Arg和Lys添加量的升高而显著降低(P < 0.05)。肌肉中大多数氨基酸含量受饲料Arg和Lys添加量的交互作用,显著性最低值均出现在Arg和Lys添加量分别为0.9%和2.39%组(P < 0.05)。以上结果表明,Arg和Lys的交互作用显著影响了大菱鲆幼鱼的饲料效率、鱼体蛋白质沉积和肌肉氨基酸含量;Arg和Lys添加量分别为0.9%和1.19%时,大菱鲆有最大生长和饲料利用效率;与Arg相比,Lys为主要影响因素,适量添加Lys可以促进生长,而添加量过高Lys会与Arg产生拮抗作用,抑制生长、饲料利用和肌肉氨基酸沉积。  相似文献   

6.
臭氧杀菌结合气调包装对缢蛏的保鲜效果   总被引:1,自引:0,他引:1  
以缢蛏为研究对象,通过臭氧杀菌及不同气调包装处理,测定其在(0±0.5) ℃冷藏过程中的菌落总数、理化和感官等指标的变化,评价臭氧杀菌结合气调包装的保鲜效果。臭氧处理浓度为1 mg/L,包装条件分别为低氧气调包装(60% CO2+30% N2+10% O2)、无氧气调包装(60% CO2+40% N2)、空气包装(对照)、低氧气调包装(60% CO2+30% N2+10% O2)与臭氧处理复合、无氧气调包装(60% CO2+40% N2)与臭氧处理复合、臭氧处理包装。结果显示:0 ℃下缢蛏在空气包装下贮藏4 d和臭氧处理包装下贮藏8 d后菌落总数分别达到1.76×107 cfu/g和1.14×107 cfu/g,在有氧气调包装条件下和无氧气调包装调节下贮藏10 d后菌落总数分别达到1.87×107 cfu/g和1.03×107 cfu/g,超过规定的卫生标准;而有氧气调包装结合臭氧处理可使缢蛏的货架期达到12 d(9.33×106 cfu/g),无氧气调包装结合臭氧处理可使缢蛏货架期延长至14 d(8.74×106 cfu/g)以上。各处理组的TVB-N、K值、感官评分、pH变化也均与贮藏时间相关(P<0.05),并且气调包装结合臭氧处理组样品在冷藏期间的TVB-N、pH、K值和感官等指标均优于单独的气调包装或臭氧处理。相对于其它实验组,臭氧处理结合无氧气调包装组保鲜效果最好,样品在货架期末(14 d)TVB-N达到14.952 mgN/100 g,K值达到55%,感官评分达到5分,仍处于中等新鲜水平或可接受程度。总体结果表明,臭氧处理结合气调包装能有效延长冷藏缢蛏的货架期。  相似文献   

7.

为获得大口黑鲈(Micropterus salmoides)雌性化逆转的最适参数, 建立伪雌鱼性别诱导和全雄苗种创制技术,

采用15 日龄(days post hatching, dph)且体长为(1.00±0.01) cm 的大口黑鲈幼鱼为实验对象, 投喂拌有17β-雌二醇

(17β-estradiol, 17β-E2)或曲洛斯坦(trilostane, TR)的人工配合饲料, 3 个实验组饲料分别含有30 mg/kg 17β-E2、

30 mg/kg TR 和20 mg/kg 17β-E2+10 mg/kg TR (依次命名为E30、TR30 和E20TR10), 对照组饲料不含17β-E2 和TR

(命名为C), 60 d 后停止投喂外源激素, 分析饲喂17β-E2 和TR 对大口黑鲈生长性能、雌性比例、性腺发育的影响;

12 月龄时, 采集各实验组伪雌鱼和对照组雌雄鱼血液和性腺组织, 检测性类固醇类激素含量、dmrt1 和cyp19a1a

基因表达水平及卵巢发育形态。结果表明, 饲喂外源雌性激素60 d 后, E30 和E20TR10 组的体长和体重显著低于C

组(P<0.05), TR30 组的体长和体重高于对照组但无显著差异(P>0.05), E30、TR30 和E20TR10 组雌性比例分别为

100.00%、0%、100.00%, C 组雌性比例为53.33%; 性腺组织切片结果显示, C 组卵巢有大量初级卵母细胞, E30 和

E20TR10 组遗传雄鱼出现卵巢腔、卵原细胞和卵母细胞, 而TR30 组雄鱼未发生性逆转; 12 月龄时, 各实验组伪雌

鱼比例未发生变化, C 组雌性比例为46.67%; E30 和E20TR10 组伪雌鱼的卵巢发育迟滞, 处于II 期; 此外, E30 和

E20TR10 组伪雌鱼血清中雌二醇(estradilol, E2)含量显著高于对照组雄鱼(P<0.05), TR30 组低于对照组雄鱼, 但无

显著差异(P>0.05), 各实验组血清中睾酮(testosterone, T)含量显著高于对照组雌鱼(P<0.05)。与对照组雄鱼相比,

E30 和E20TR10 组伪雌鱼cyp19a1a 表达量显著上调(P<0.05), dmrt1 表达量显著下调(P<0.05)。综上所述, 本研究

投喂30 mg/kg TR 未获得伪雌鱼, 而投喂30 mg/kg 17β-E2 和20 mg/kg 17β-E2+10 mg/kg TR 实验组均可获得大口黑

鲈伪雌鱼。12 月龄伪雌鱼卵巢处于II 期, 血清中E2 含量及卵巢中cyp19a1a 表达量均未到达正常雌鱼水平, 导致

卵巢发育迟滞。  相似文献   


8.
周帅  胡琳琳  房文红  周凯  于慧娟 《水产学报》2011,35(8):1182-1190
采用高效液相色谱法,研究盐度33条件下恩诺沙星口灌和肌肉注射给药(剂量10 mg/kg)后,恩诺沙星及其代谢物环丙沙星在拟穴青蟹体内的药代动力学和组织分布。血淋巴和组织中药代动力学参数采用基于统计矩原理的非房室模型进行计算。恩诺沙星口灌和肌肉注射拟穴青蟹给药后,血药达峰快,分别为0.5 h和1 min,达峰浓度分别为12.90和31.86 μg/mL,曲线下面积(AUC)分别为216.1和816.8 μg/(mL·h)。恩诺沙星在拟穴青蟹组织中分布较广,口灌给药下肌肉和肝胰腺AUC分别为445.9和817.6 μg/(g·h),肌肉注射给药下的AUC分别为554.7和2 573.7 μg/(g·h)。与其它水产动物相比,恩诺沙星在拟穴青蟹体内消除速度为中等水平,口灌和肌肉注射恩诺沙星后血药消除半衰期(t1/2z)分别为26.45和57.02 h,总体清除率(CLz)分别为0.054和0.012 L/(h·kg)。恩诺沙星在拟穴青蟹体内代谢生成环丙沙星的量较少,口灌给药下血淋巴、肌肉和肝胰腺的AUCCIP/AUCENR分别为6.66%、3.66%和4.78%,肌肉注射给药下,其相应值分别为4.16%、7.24%和1.48%,在拟穴青蟹体内起药效作用仍是以恩诺沙星为主。以Cmax/MIC、AUC0-24/MIC评价恩诺沙星在青蟹体内的药效作用,建议给拟穴青蟹以10 mg/kg剂量每隔24小时投喂一次恩诺沙星,对弧菌引起的细菌性疾病具有较好的防治效果。  相似文献   

9.
为了发掘更多三角帆蚌具有EF-hand结构域的功能基因及其蛋白质,本研究运用RACE-PCR技术,克隆得到了三角帆蚌包含EF-hand结构域钙结合蛋白1基因(EF-hand calcium-binding domain-containing protein 1,EFCB1)的cDNA全长并进行了生物信息学分析;通过real-time Q-PCR技术,分析了EFCB1基因在三角帆蚌10个组织,以及内脏团、外套膜插核后不同时间点的时空表达特点。结果表明三角帆蚌EFCB1基因cDNA序列全长981 bp,ORF为531 bp,编码176个氨基酸残基,5'-UTR 239 bp和3'-UTR 211 bp。EFCB1分子式为C877H1348N238O270S10,分子量约19.9 ku,等电点为4.70,不稳定系数为62.65,属亲水蛋白。其序列无信号肽序列,存在1个跨膜区域和2个EF-hand结构域,EF-hand模块分别为DLNDDKLISPEE(98-109)和DTNGDDKLDGEE(129-140)。荧光定量结果显示三角帆蚌EFCB1基因在各组织中均有表达,其中在肠和鳃中表达量最高(P<0.05),外套膜中表达量显著高于内脏团(P<0.05)。EFCB1基因在插核后不同时期的外套膜和内脏团育珠部位组织中表达具有显著差异(P<0.05),在外套膜中的表达量均显著高于内脏团(P<0.05),在插核后第20 天时表达量显著高于各时期(P<0.05)。研究表明,EFCB1在三角帆蚌Ca2+的吸收过程中发挥调节作用,在珍珠囊形成过程中以及珍珠形成初期具有重要功能。  相似文献   

10.
付静  吕利群 《中国水产科学》2022,29(11):1659-1668
前期研究发现槲皮素(Quercetin, Qct)在体外对 I、II、III 型草鱼呼肠孤病毒(grass carp reovirus, GCRV)均有抑制效果。为进一步阐明 Qct 在草鱼(Ctenopharyngodon idella)中拮抗 GCRV 的临床应用潜力, 本研究应用草鱼细胞系测定 Qct 对 I 型 GCRV 的半数有效抑制浓度(EC50), 并利用高效液相色谱法研究 Qct 在草鱼中的药代动力学特征, 在稀有鮈鲫(Gobiocypris rarus)模型中评估 Qct 药效。结果显示, Qct 对 GCRV 的 EC50 为 4.796 μg/mL; 草鱼单次口灌 20、40、60 mg/kg Qct 粗提物, 48 h 后血液中最大峰值浓度(Cmax)分别为 0.129 μg/mL、0.583 μg/mL、0.666 μg/mL; 肝胰脏中 Cmax 分别为 3.822 μg/g、5.386 μg/g、6.252 μg/g; 肾脏中 Cmax 分别为 2.437 μg/g、3.140 μg/g、3.447 μg/g。 血液中 Qct 的 Cmax 远低于 EC50, 40 mg/kg 或 60 mg/kg 槲皮素处理组肝胰腺中的 Cmax 高于 EC50。II 型 GCRV 稀有鮈鲫感染模型中, qRT-PCR 显示 Qct 可以抑制病鱼各组织内病毒的复制; 组织病理切片显示 Qct 能减少炎症反应。 综上, Qct 不但抑制 GCRV 复制, 也可能通过降低炎症反应发挥抗病毒作用, 从而降低死亡率, 40 mg/kg 的剂量可以保障 Qct 在草鱼体内的抗病毒活性。  相似文献   

11.
An 8‐week feeding trial was conducted to evaluate the sparing effect of dietary phytase on decreasing supplement of dietary sodium dihydrogen phosphate (NaH2PO4) in the diets of juvenile yellow catfish Pelteobagrus fulvidraco. Seven diets were formulated: one reference group that contained only 2% NaH2PO4; one control group that consisted of neither NaH2PO4 nor phytase; and five treatment groups supplemented with 1000 IU kg?1 phytase and 2%, 1.5%, 1%, 0.5%, 0% concentrations of NaH2PO4. Thus, dietary NaH2PO4 was substituted with phytase at ratios of 0%, 25%, 50%, 75% and 100% respectively. Triplicate tanks were each filled with 50 juvenile fish (3.5 ± 0.1 g), which were fed one of the seven experimental diets. Substituting phytase for NaH2PO4 didn't diminish the growth performance, protein, dry matter, lipid and ash deposit and protein retention in the whole body and reduced feed conversion ratio compared to the reference diet. Moreover, phytase substitution at level of 0–50% enhanced P, Mg and Ca deposit. However, weigh gain had a tendendy of decreasing with increasing substituted level. Phytase substituted level exceeding 75% decreased serum P concentration compared to the control group. Apparent digestibility of P peaked when 1000 IU kg?1 phytase substituted 50% NaH2PO4. Phytase also increased apparent digestibility of protein. The improvement of digestibility of protein and P resulted in the decrease in N load by 25% and P load by 31% to environment. Therefore, 50% dietary NaH2PO4 can be substituted by 1000 IU kg?1 feed phytase for juvenile yellow catfish.  相似文献   

12.
《水生生物资源》1998,11(1):29-33
Zero-water exchange culture tanks were stocked with Penaeus vannamei postlarvae to compare the effects of (i) three dietary phosphorus levels: 0.4, 0.8 and 1.2 %, and (ii) three dietary inorganic phosphorus sources: CaHPO4, Na2HPO4 and NaH2PO4, on postlarvae biological performance, and total reactive phosphorus accumulation in the water (TRPAW). Dietary Ca:P ratio was maintained within a 1:1 to 1:2 ratio. Postlarvae survival was high and not significantly different among treatments. Postlarvae growth was not significantly different, regardless of dietary phosphorus level. TRPAW was significantly higher with increasing level of dietary phosphorus. Dietary inorganic phosphorus source did not have a significant effect on postlarvae growth. No significant differences were found on TRPAW between diets with Na2HPO4 and NaH2PO4 supplementation at equal dietary phosphorus level. TRPAW was significantly lower with CaHPO4 than with Na2HPO4 or NaH2PO4 supplementation at equal dietary phosphorus level. Environmental quality of culture water may be greatly modified through nutritional strategies without negatively affecting shrimp biological performance.  相似文献   

13.
Two experiments were conducted for 30 days each to investigate the effective phosphorus source and supplemental phosphorus levels for postlarval Litopenaeus vannamei. The first experiment was performed in postlarval shrimp (mean initial wet weight 2 mg) fed four isoenergic and isonitrogenous diets containing three supplemented inorganic phosphorus sources [D1: no supplemental phosphorus, D2: NaH2PO4·2H2O, D3: KH2PO4·2H2O, D4: Ca(H2PO4)2·2H2O]. The quantities of the three supplemental NaH2PO4·2H2O, KH2PO4·2H2O and Ca(H2PO4)2·2H2O were 11.6, 12.8 and 10 g kg?1 of the diet, respectively in order to make the three diets have the same total phosphorus. Growth performance (final mean body weight, FBW; weight gain, WG; specific growth ratio, SGR) of shrimp in D3 treatment was the highest and had significant difference with the D1 treatment. The survival of shrimp in D3 treatment was the highest and had significant difference with the other treatments. The mineral concentration and body composition of shrimp were not significantly different among treatments. We could conclude that KH2PO4·2H2O was the optimal phosphorus source for postlarval L. vannamei from the growth performance and survival. The second experiment was performed in postlarval shrimp (mean initial wet weight 0.88 mg) fed four isoenergic and isonitrogenous diets containing four supplemental KH2PO4·2H2O levels (d1, d2, d3 and d4 with 0, 5, 10 and 20 g kg?1, respectively). Shrimp in d2 treatment showed the highest growth performance and survival and also showed significant difference with other diet treatments. The whole body content of zinc (Zn) increased with the increase of dietary KH2PO4·2H2O and significant differences were observed when dietary KH2PO4·2H2O reached 5 g kg?1, excess KH2PO4·2H2O supplementation (10 and 20 g kg?1) had a negative effect on Zn content, the Zn content significantly decreased when KH2PO4·2H2O was 20 g kg?1. We can conclude that the amount of total phosphorus in the diet should be maintained between 20.9 and 22.0 g kg?1, the amount of supplemental KH2PO4·2H2O in the diet is less than 10 g kg?1.  相似文献   

14.
A 60‐day feeding study with rainbow trout, Oncorhynchus mykiss, was conducted to determine the effects of replacement of fish oil (FO) by unrefined peanut oil (PO) on growth performance, feed utilization, body composition, fatty acid composition and serum biochemical and haematological parameters. Rainbow trouts (51.60 ± 0.75 g) were fed five experimental diets formulated by replacing dietary FO with PO at levels of level 0 (PO0), 1/4 (PO25), 1/2 (PO50), 3/4 (PO75) and 4/4 (PO100), respectively. As a result, the best growth performance was observed in fish fed with PO0 and PO50 diet. No significant differences were detected among the groups in terms of body compositions. Fatty acid profiles of the fish fillets reflected the fatty acid profiles of the feeds that the fishes were fed with. In this study, the haematological parameters detected that there were no significant differences compared to the control group, whereas the serum biochemical parameters generally worsened as the ratio of peanut oil in the ration exceeded half of fish oil. As a conclusion, the results of the study suggested that the unrefined peanut oil could be used as a replacer of fish oil in diets for rainbow trout.  相似文献   

15.
A feeding trial was conducted for 60 days to study the effect of dietary protein, microbial phytase and citric acid on intestinal digesta pH, bone ash and bone mineral contents in Labeo rohita juveniles. Eight experimental diets were prepared in 2 × 2 × 2 factorial arrangement with crude protein levels (25% and 35%), microbial phytase (0 and 500 U kg?1), and citric acid (0 and 3%). The 25% crude protein level feed was supplemented with phytase (U kg?1) and citric acid (%) at the level of 0,0 (C25); 500,0 (T1); 0,3 (T2); 500,3 (T3), and 35% crude protein level feed at 0.0 (C35); 500,0 (T4); 0,3 (T5) and 500,3(T6) respectively. One hundred and twenty juveniles of L. rohita (av. wt. 12.61–13.72 g) were distributed randomly in eight treatments, each of with three replicates. Addition of citric acid in the 25% crude protein feed significantly decreased (P<0.001) feed pH with concurrent decrease in intestinal digesta pH (P<0.001) and increased the bone ash content (P<0.05) by 4.6%. An interaction between citric acid and phytase (P<0.05) was also observed for bone ash content. Increasing the dietary protein content from 25% to 35% significantly decreased (P<0.01) bone Zn content by 14.9%, which was more prominent with the addition of citric acid, resulting in significant interaction between protein and citric acid (P<0.05), but the bone Cu content was significantly increased (P<0.01) with increasing dietary protein content. Dietary supplementation of microbial phytase (500 U kg?1) significantly increased (P<0.05) bone Na, Ca, K, P and Fe contents by 15%, 12.1%, 17.4%, 9.2% and 40.7%, respectively, whereas bone P and Mn content was significantly increased (P<0.05) by addition of citric acid (3%). Addition of phytase to plant‐based diets increased the bioavailability of minerals, thereby increasing bone mineralization. The effect of phytase was increased because of addition of citric acid (3%).  相似文献   

16.
Preliminary studies were conducted to determine if several feed supplements with the potential to improve dietary mineral availabilities in fish meal had any measurable effect in fish feeds. In the first study with rainbow trout, 11 supplements were tested: citric acid; sodium citrate; potassium chloride; sodium chloride; histamine dihydrochloride; EDTA disodium salt; sodium bicarbonate; a mixture of amino acids; ascorbic acid; a mixture of inositol and choline; and cholecalciferol. Apparent availability of calcium, phosphorus, magnesium, sodium, iron, manganese and strontium in fish meal-based diets was determined using both yttrium oxide (Y2O3) and chromium oxide (Cr2O3) as inert dietary markers. Apparent availability was expressed as the fractional net absorption (%) of minerals from diets. After a 7-day acclimation period with test diets, fecal samples were collected for five consecutive days using passive collection systems. Apparent availability of calcium, phosphorus, magnesium, iron, manganese and strontium was increased by citric acid supplementation. Apparent availability of manganese also was increased by EDTA and sodium citrate. The other supplements had no measurable effect on the apparent availability of minerals in fish meal. In the second study, the effect of supplemental citric acid was further investigated using monogastric (rainbow trout) and agastric fish (goldfish). Fish were fed for 5 weeks (rainbow trout) or 3 weeks (goldfish) with fish meal-based diets containing either 0% (control), 2% or 5% citric acid on a dry basis. Feces were collected by settling and by stripping. Apparent availabilities of calcium and phosphorus were greatly affected by citric acid supplementation in rainbow trout but not in goldfish. Phosphorus levels in feces of fish fed a diet with 5% citric acid were approximately half of that of fish fed the control diet (0% citric acid) in the rainbow trout trial. This pattern was consistent during the 5-week feeding trial. A dietary supplement of citric acid as high as 5% did not reduce feed intake or appetite of rainbow trout. Conversely, this level of dietary acidification led to a marked reduction of feed intake in goldfish. Dietary supplementation of citric acid at 2% level did not reduce feed intake of goldfish; however, this level of dietary acidification had little effect on the apparent availability of major minerals in fish meal-based diet. Levels of non-fecal excretion of calcium and phosphorus, inorganic phosphorus in urine, and citric acid in feces were increased in rainbow trout fed 5% citric acid. The pH values of the feces and urine were decreased in rainbow trout fed citric acid. Plasma bicarbonate, plasma calcium and phosphorus, and blood pH of rainbow trout tended to increase by a 5% dietary supplementation of citric acid. The soluble inorganic phosphorus content increased in the diets and decreased in the feces of rainbow trout by supplementing the diet with 5% citric acid. Feces samples of rainbow trout collected by stripping provided similar availability values to data collected by settling for most elements except sodium, which had negative values in all dietary treatments.  相似文献   

17.
This study investigated the effects of glutamate (Glu) in low‐phosphorus diets on growth performance, haematological indices, antioxidant enzyme activity, immune‐related gene expression and resistance to Aeromonas hydrophila in juvenile mirror carp (Cyprinus carpio) (5.07 ± 0.02 g). Fish were fed either graded levels of Glu (0 g/kg, 5 g/kg,  10 g/kg and 20 g/kg, named G0, G0.5, G1 and G2, respectively) in a low‐phosphorus diet (15 g/kg NaH2PO4, 0.49), or a normal phosphorus diet ( 20 g/kg NaH2PO4, 0.61) without added Glu (C), for 8 weeks. At the end of the feeding trial, the fish were challenged with A. hydrophila. Compared with G0 group, 10 g/kg and 20 g/kg Glu supplementation of the low‐phosphorus diet significantly improved the final weight, WGR, SGR and PER, and decreased FCR (p < .05). Glu supplementation of the low‐phosphorus diet significantly enhanced the T‐AOC, SOD activity and GSH content in intestine (p < .05). Glu supplementation significantly reduced MDA content in foregut and midgut and increased CAT activity in midgut and hindgut (p < .05). Regarding immune‐related gene expression, Glu supplementation significantly diminished the up‐regulation of intestinal TNF‐α, IL‐1β and IL‐8 mRNA levels induced by phosphorus deficiency (p < .05). The survival rate of the G1 group was significantly higher than that of the G0 group (p < .05). In conclusion, 10 g/kg Glu supplementation in low‐phosphorus diets can improve the growth performance, enhance the activity of intestinal antioxidant enzymes and strengthen the immune function of juvenile mirror carp.  相似文献   

18.
A 6‐wk feeding trial was conducted to reevaluate the phosphorus (P) requirement of juvenile olive flounder and the bioavailability of various inorganic phosphorus sources (IPS). Eight experimental diets were prepared such that all diets contained the same amount of calories, nitrogen, and calcium. Each diet included 0.33% total phosphorus (TP) and 0.60 % total calcium supplied by the basal diet. The eight experimental diets were: the basal diet without P supplementation (BD), three diets consisting of the BD supplemented with NaH,PO4.2H2O (NaP0.45 NaP0.57 or NaP1.14) to supply 0.45, 0.57 or 1.14% TP, and four diets consisting of the BD supplemented with K2HPO4 (KP0.57), Ca(H2PO4);H2O (Cap0.57), CaH2PO4;2H2O (CaHP0.57) or flounder bone meal (FBP0.57) to supply 0.57% TP. Fish (N = 480)averaging 4.02 ± 0.03 g (Mean ± SD) were distributed randomly into 24 aquaria (20 fish per aquarium), and were fed one of the eight experimental diets in triplicate groups. The weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER) and feed efficiency (FE) of fish fed the NaP0.57 diet were significantly higher than those of fish fed the BD, NaP1.14, KP0.57, CaHP0.57 and FBP0.57 diets (P > 0.05). There was no significant difference in WG, SGR, PER, and FER among fish fed the Nap0.45, NaP0.57 and Cap0.57, diets. Whole body P retention (WBPret) in fish fed the Nap0.57 diet was significantly higher than in fish fed the BD, NaP1.14, KP0.57 CaHP0.57 and FBP0.57diets (P > 0.05). There was no significant difference in WBPret among fish fed the NaP0.47, NaP0.57, and CaP0.57, diets. The ability of the fish to digest the phosphorus in the NaP0.45, Nap0.57, NaP1.14, and CaP0.57 diets was significantly better than that of fish fed the other diets (P > 0.05). These results indicated that the dietary P requirement for juvenile olive flounder could be 0.45457%. Also, NaH,PO; 2H2O and Ca(H2PO4);H2O appeared to have a better bioavailability than the other P sources in juvenile olive flounder.  相似文献   

19.
Effects of thermal and enzymatic treatments of soybean meal on apparent absorption of total phosphorus, phytate phosphorus, nitrogen (protein), ash, calcium, magnesium, copper, iron, manganese, strontium and zinc were examined using rainbow trout, Oncorhynchus mykiss (Walbaum), as the test species. Absorption of the test nutrients was estimated using yttrium as an inert non-absorbable indicator. Thermal treatments (microwaving, dry roasting, steam heating, cooking) had no measurable effect on the apparent absorption of phosphorus and other minerals. Phytase supplementation increased the apparent absorption of phosphorus, nitrogen (protein), ash, calcium, magnesium, copper, iron, strontium and zinc in low-ash diets containing soybean meal, but had little effect in high-ash diets containing both soybean and fish meal. In low-ash diets, the apparent absorption of phosphorus increased in accord with the level of phytase added to the diet, from 27% (no phytase added) up to 90% (phytase added, 4000 units kg−1 diet) or 93% (predigested with phytase, 200 units kg−1 soybean meal). In high-ash diets, dietary acidification with citric acid decreased the effect of phytase, whereas in low-ash diets, acidification markedly increased the effect of the enzyme. Excretion of phosphorus in the faeces of fish fed a low-ash diet containing phytase-treated soybean meal was 0.32 g per kg diet consumed, a 95%−98% reduction compared with phosphorus excretion by fish consuming commercial trout feeds.  相似文献   

20.
A feeding experiment was conducted to investigate the effect of organic acids and/or lipid supplementation on growth, utilization and environmental loading of nitrogen (N) and phosphorus (P) in juvenile yellowtail fed fishmeal (FM) and plant protein (PP) diets. Six diets as FM (FM‐based), FM+P (FM with inorganic P), FM+L (FM with lipid), PP+CA (PP with citric acid), PP+L+CA (PP with lipid and citric acid) and PP+L+FA (PP with formic acid) were formulated. Yellowtails were fed each of the diets in duplicate groups; once a day, 6 days a week to near satiation at water temperature 19.0–25.0 °C for 16 weeks. Fishmeal with inorganic P gave the best growth while PP+L+FA the lowest. However, growth increased in PP+CA and PP+L+CA. Addition of lipid significantly increased N and P retention resulting in significant reduction in N and P excretion. Citric acid and FA supplementation to PP diets also increased retention of P; hence, its excretion was lowered. Thus, CA, FA and lipid in juvenile yellowtail diets can help to partially replace FM with PP sources and reduce inorganic P use to minimize environmental loading from aquafeeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号