首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Context

The habitat amount hypothesis has rarely been tested on plant communities. It remains unclear how habitat amount affect species richness in habitat fragments compared to island effects such as isolation and patch size.

Objectives

How do patch size and spatial distribution compared to habitat amount predict plant species richness and grassland specialist plant species in small grassland remnants? How does sampling area affect the prediction of spatial variables on species richness?

Methods

We recorded plant species density and richness on 131 midfield islets (small remnants of semi-natural grassland) situated in 27 landscapes in Sweden. Further, we tested how habitat amount, compared to focal patch size and distance to nearest neighbor predicted species density and richness of plants and of grassland specialists.

Results

A total of 381 plant species were recorded (including 85 grassland specialist species). A combination of patch size and isolation was better in predicting both density and richness of species compared to habitat amount. Almost 45% of species richness and 23% of specialist species were explained by island biogeography parameters compared to 19 and 11% by the amount of habitat. A scaled sampling method increased the explanation level of island biogeography parameters and habitat amount.

Conclusions

Habitat amount as a concept is not as good as island biogeography to predict species richness in small habitats. Priority in landscape planning should be on larger patches rather than several small, even if they are close together. We recommend a sampling area scaled to patch size in small habitats.
  相似文献   

2.

Context

Butterflies have been continuously declining for several decades in Europe due to many factors, such as farming intensification. Rural landscapes have undergone dramatic changes leading to homogenized landscapes.

Objectives

In this study, we investigated how landscape composition, structure and connectivity impact butterfly communities according to their ecological and biological traits.

Methods

We made use of 5669 Lepidoptera surveys performed at 4525 distinct locations in lowland Central France. We considered 19 ecological groups based on habitat specialization, mobility, diet, voltinism or overwintering strategy. Generalized linear mixed-effect models were used to relate the species richness of these groups to landscape variables defined in circular zones with radius from 250 m to 5 km.

Results

Richness of most species groups co-varied with landscape variables, with the exception of mobile, imago-overwintering, monophagous and polyphagous species. Habitat proportion explained more variation in butterfly diversity than habitat connectivity or habitat diversity. Moreover, the best proportion models were generally found for the 250-m circular zones. Thirteen species groups were disfavored by cropland amount. Except for forest specialists and high mobility group, no other group was more diverse in landscapes dominated by a single land cover type. Rather, for total diversity and 14 groups, species richness peaked for forest proportions varying between 40 and 80%, and for total diversity and nine groups for grassland proportions ranging from 30 to 60%.

Conclusions

These results indicate that landscape homogenization is contributing to the ongoing decline in butterflies, and support preserving and (re)creating mosaics of grasslands and forests.
  相似文献   

3.

Context

The relative importance of habitat area and connectivity for species richness is often unknown. Connectivity effects may be confounded with area effects or they may be of minor importance as posited by the habitat-amount hypothesis.

Objectives

We studied effects of habitat area and connectivity of linear landscape elements for plant species richness at plot level. We hypothesized that connectivity of linear landscape elements, assessed by resistance distance, has a positive effect on species richness beyond the effect of area and, further, that the relative importance of connectivity varies among groups of species with different habitat preferences and dispersal syndromes.

Methods

We surveyed plant species richness in 50 plots (25 m2) located on open linear landscape elements (field margins, ditches) in eight study areas of 1 km2 in agricultural landscapes of Northwest Germany. We calculated the area of linear landscape elements and assessed their connectivity using resistance distance within circular buffers (500 m) around the plots. Effects of area and connectivity on species richness were modelled with generalised linear mixed models.

Results

Species richness did not increase with area. Resistance distance had significant negative effects on total richness and on the richness of typical species of grasslands and wetlands. Regarding dispersal syndromes, resistance distance had negative effects on the richness of species with short-distance, long-distance and aquatic dispersal. The significant effects of resistance distance indicated that species richness increased with connectivity of the network of linear landscape elements.

Conclusions

Connectivity is more important for plant species richness in linear landscape elements than area. In particular, the richness of plant species that are dispersal limited and confined to semi-natural habitats benefits from connective networks of linear landscape elements in agricultural landscapes.
  相似文献   

4.

Context

In heterogeneous landscapes, habitat complementation is a key process underlying the distribution of mobile species able to exploit non-substitutable resources over large home ranges. For instance, insectivorous bats need to forage in a diversity of habitat patches offering varied compositions and structures within forest landscape mosaics to fulfill their life cycle requirements.

Objectives

We aimed at analyzing the effects of forest structure and composition measured at the stand and landscape scales on bat species richness, abundance and community composition in pine plantation forests of south-western France.

Methods

We sampled bat communities at different periods of the summer season using automatic ultrasound recorders along a tree composition gradient from pine monocultures to pure oak stands. We analyzed bat species activity (as a proxy for bat abundance) and species richness with linear mixed models. Distance-based constrained ordinations were used to partition the spatio-temporal variation in bat communities.

Results

Deciduous tree cover increased bat activity and modified community composition at both stand and landscape scales. Changes in bat communities were mostly driven by landscape-scale variables while bat activity responded more to stand-scale predictors.

Conclusions

The maintenance of deciduous trees at both stand and landscape scales is likely critical for bat communities living in fast-growing conifer plantations, by increasing the availability and diversity of prey and roosting sites. Our study suggests that bats respond to forest composition at both stand and landscape scales in mosaic plantation landscapes, mainly through a resource complementation process.
  相似文献   

5.

Context

Landscape and habitat filters are major drivers of biodiversity of small habitat islands by influencing dispersal and extinction events in plant metapopulations.

Objectives

We assessed the effects of landscape and habitat filters on the species richness, abundance and trait composition of grassland specialist and generalist plants in small habitat islands. We studied traits related to functional spatial connectivity (dispersal ability by wind and animals) and temporal connectivity (clonality and seed bank persistence) using model selection.

Methods

We sampled herbaceous plants, landscape (local and regional isolation) and habitat filters (inclination, woody encroachment and disturbance) in 82 grassland islands in Hungary.

Results

Isolation decreased the abundance of good disperser specialist plants due to the lack of directional vectors transferring seeds between suitable habitat patches. Clonality was an effective strategy, but persistent seed bank did not support the survival of specialist plants in isolated habitats. Generalist plants were unaffected by landscape filters due to their wide habitat breadth and high propagule availability. Clonal specialist plants could cope with increasing woody encroachment due to their high resistance against environmental changes; however, they could not cope with intensive disturbance. Steep slopes providing environmental heterogeneity had an overall positive effect on species richness.

Conclusions

Specialist plants were influenced by the interplay of landscape filters influencing their abundance and habitat filters affecting species richness. Landscape filtering by isolation influenced the abundance of specialist plants by regulating seed dispersal. Habitat filters sorted species that could establish and persist at a site by influencing microsite availability and quality.
  相似文献   

6.

Context

Hoverflies are often used as bio-indicators for ecosystem conservation, but only few studies have actually investigated the key factors explaining their richness in woodlands.

Objectives

In a fragmented landscape in southwest France, we investigated the joint effects of woodland area, structural heterogeneity, connectivity and history on the species richness of forest-specialist hoverflies, and whether there was a time lag in the response of hoverflies to habitat changes, and tested the effect of spatiotemporal changes.

Methods

Current species richness was sampled in 48 woodlands using 99 Malaise traps. Structural variables were derived from a rapid habitat assessment protocol. Old maps and aerial photographs were used to extract past and present spatial patterns of the woodlands since 1850. Relationships between species richness and explanatory variables were explored using generalized linear models.

Results

We show that current habitat area, connectivity, historical continuity and the average density of tree-microhabitats explained 35 % of variation in species richness. Species richness was affected differently by changes in patch area between 1979 and 2010, depending on woodland connectivity. In isolated woodlands, extinction debt and colonization credit were revealed, showing that even several decades are not sufficient for hoverflies to adapt to landscape-scale habitat conditions.

Conclusions

These findings emphasise the importance of maintaining connectedness between woodlands, which facilitates the dispersion in a changing landscape. Our results also highlight the benefits of using a change-oriented approach to explain the current distribution patterns of species, especially when several spatial processes act jointly.
  相似文献   

7.

Context

An increasing number of studies have investigated the impact of environmental heterogeneity on faunal assemblages when measured at multiple spatial scales. Few studies, however, have considered how the effects of heterogeneity on fauna vary with the spatial scale at which the response variable is characterised.

Objectives

We investigated the relationship between landscape properties in a region characterised by diverse fire mosaics, and the structure and composition of avian assemblages measured at both the site- (1 ha) and landscape-scale (100 ha).

Methods

We surveyed birds and calculated spatial landscape properties in sub-tropical woodlands of central Queensland, Australia.

Results

Environmental heterogeneity, as measured by topographic complexity, was consistently important for bird species richness and composition. However, the explanatory power of topographic complexity varied depending on the spatial scale and the component of diversity under investigation. We found different correlates of richness within particular foraging guilds depending on the scale at which richness was measured. Extent of long-unburnt habitat (>10 years since fire) was the most important variable for the landscape-scale richness of frugivores, insectivores and canopy feeders, whereas environmental heterogeneity in the surrounding landscape was more important for site-scale richness of these foraging guilds.

Conclusions

The response of species richness to landscape characteristics varies among scales, and among components of diversity. Thus, depending on the scale at which a biodiversity conservation goal is conceptualised—maximising richness at a site, or across a landscape—different landscape management approaches may be preferred.
  相似文献   

8.

Context

Habitat loss and habitat fragmentation negatively affect amphibian populations. Roads impact amphibian species through barrier effects and traffic mortality. The landscape variable ‘accessible habitat’ considers the combined effects of habitat loss and roads on populations.

Objectives

The aim was to test whether accessible habitat was a better predictor of amphibian species richness than separate measures of road effects and habitat loss. I assessed how accessible habitat and local habitat variables determine species richness and community composition.

Methods

Frog and tadpole surveys were conducted at 52 wetlands in a peri-urban area of eastern Australia. Accessible habitat was delineated using a highway. Regressions were used to examine relationships between species richness and eleven landscape and local habitat variables. Redundancy analysis was used to examine relationships between community composition and accessible habitat and local habitat variables.

Results

Best-ranked models of species richness included both landscape and local habitat variables. There were positive relationships between species richness and accessible habitat and distance to the highway, and uncertain relationships with proportion cover of native vegetation and road density. There were negative relationships between species richness and concreted wetlands and wetland electrical conductivity. Four species were positively associated with accessible habitat, whereas all species were negatively associated with wetland type.

Conclusions

Barrier effects caused by the highway and habitat loss have negatively affected the amphibian community. Local habitat variables had strong relationships with species richness and community composition, highlighting the importance of both availability and quality of habitat for amphibian conservation near major roads.
  相似文献   

9.

Context

In natural populations, gene flow often represents a key factor in determining and maintaining genetic diversity. In a worldwide context of habitat fragmentation, assessing the relative contribution of landscape features to gene flow thus appears crucial for sustainable management of species.

Objective

We addressed this issue in Mediterranean mouflon (Ovis gmelini musimon?×?Ovis sp.) by combining previous knowledge on behavioral ecology with landscape genetics. We also assessed how sex-specific behavioral differences translated in term of functional connectivity in both sexes.

Methods

We relied on 239 individuals genotyped at 16 microsatellite markers. We applied a model optimization approach in a causal modeling framework of landscape genetics to test for the effects on gene flow of habitat types and linear landscape features previously identified as important for movements and habitat selection in both sexes. Five resistance values were alternately assigned to these landscape characteristics leading to a comprehensive set of resistance surfaces.

Results

Isolation by resistance shaped female gene flow, supporting the central role of linear landscape features as behavioral barriers for animal movements. Conversely, no isolation by resistance was detected in males. Although a lack of statistical power cannot be discarded to explain this result, it tended to confirm that males are less influenced by landscape structures during the mating period.

Conclusions

Combining previous knowledge on behavioral ecology with results from landscape genetics was decisive in assessing functional landscape connectivity in both sexes. These results highlighted the need to perform sex-specific studies for management and conservation of dimorphic species.
  相似文献   

10.

Context

The landscape heterogeneity hypothesis states that increased heterogeneity in agricultural landscapes will promote biodiversity. However, this hypothesis does not detail which components of landscape heterogeneity (compositional or configurational) most affect biodiversity and how these compare to the effects of surrounding agricultural land-use.

Objectives

Our objectives were to: (1) assess the influence of the components of structural landscape heterogeneity on taxonomic diversity; and (2) compare the effects of landscape heterogeneity to those of different types of agricultural land-use in the same landscape across different taxonomic groups.

Methods

We identified a priori independent gradients of compositional and configurational landscape heterogeneity within an agricultural mosaic of north-eastern Swaziland. We tested how bird, dung beetle, ant and meso-carnivore richness and diversity responded to compositional and configurational heterogeneity and agricultural land-use across five different spatial scales.

Results

Compositional heterogeneity best explained species richness in each taxonomic group. Bird and ant richness were both positively correlated with compositional heterogeneity, whilst dung beetle richness was negatively correlated. Commercial agriculture positively influenced bird species richness and ant diversity, but had a negative influence on dung beetle richness. There was no effect of either component of heterogeneity on the combined taxonomic diversity or richness at any spatial scale.

Conclusions

Our results suggest that increasing landscape compositional heterogeneity and limiting the negative effects of intensive commercial agriculture will foster diversity across a greater number of taxonomic groups in agricultural mosaics. This will require the implementation of different strategies across landscapes to balance the contrasting influences of compositional heterogeneity and land-use. Strategies that couple large patches of core habitat across broader scales with landscape structural heterogeneity at finer scales could best benefit biodiversity.
  相似文献   

11.

Context

Amphibians are declining worldwide and land use change to agriculture is recognized as a leading cause. Argentina is undergoing an agriculturalization process with rapid changes in landscape structure.

Objectives

We evaluated anuran response to landscape composition and configuration in two landscapes of east-central Argentina with different degrees of agriculturalization. We identified sensitive species and evaluated landscape influence on communities and individual species at two spatial scales.

Methods

We compared anuran richness, frequency of occurrence, and activity between landscapes using call surveys data from 120 sampling points from 2007 to 2009. We evaluated anuran responses to landscape structure variables estimated within 250 and 500-m radius buffers using canonical correspondence analysis and multimodel inference from a set of candidate models.

Results

Anuran richness was lower in the landscape with greater level of agriculturalization with reduced amount of forest cover and stream length. This pattern was driven by the lower occurrence and calling activity of seven out of the sixteen recorded species. Four species responded positively to the amount of forest cover and stream habitat. Three species responded positively to forest cohesion and negatively to rural housing. Two responded negatively to crop area and diversity of cover classes.

Conclusions

Anurans within agricultural landscapes of east-central Argentina are responding to landscape structure. Responses varied depending on species and study scale. Life-history traits contribute to responses differences. Our study offers a better understanding of landscape effects on anurans and can be used for land management in other areas experiencing a similar agriculturalization process.
  相似文献   

12.

Context

The ability to detect ecological networks in landscapes is of utmost importance for managing biodiversity and planning corridors.

Objectives

The objective of this study was to evaluate the information provided by a synthetic aperture radar (SAR) image for landscape connectivity modeling compared to aerial photographs (APs).

Methods

We present a novel method that integrates habitat suitability derived from remote sensing imagery into a connectivity model to explain species abundance. More precisely, we compared how two resistance maps constructed using landscape and/or local metrics derived from AP or SAR imagery yield different connectivity values (based on graph theory), considering hedgerow networks and forest carabid beetle species as a model.

Results

We found that resistance maps using landscape and local metrics derived from SAR imagery improve landscape connectivity measures. The SAR model is the most informative, explaining 58% of the variance in forest carabid beetle abundance. This model calculates resistance values associated with homogeneous patches within hedgerows according to their suitability (canopy cover density and landscape grain) for the model species.

Conclusions

Our approach combines two important methods in landscape ecology: the construction of resistance maps and the use of buffers around sampling points to determine the importance of landscape factors. This study was carried out through an interdisciplinary approach involving remote sensing scientists and landscape ecologists. This study is a step forward in developing landscape metrics from satellites to monitor biodiversity.
  相似文献   

13.

Context

Complex structural connectivity patterns can influence the distribution of animals in coastal landscapes, particularly those with relatively large home ranges, such as birds. To understand the nuanced nature of coastal forest avifauna, where there may be considerable overlap in assemblages of adjacent forest types, the concerted influence of regional landscape context and vegetative structural connectivity at multiple spatial scales warrants investigation.

Objectives

This study determined whether species compositions of coastal forest bird assemblages differ with regional landscape context or with forest type, and if this is influenced by structural connectivity patterns measured at multiple spatial scales.

Methods

Three replicate bird surveys were conducted in four coastal forest types at ten survey locations across two regional landscape contexts in northeast Australia. Structural connectivity patterns of 11 vegetation types were quantified at 3, 6, and 12 km spatial scales surrounding each survey location, and differences in bird species composition were evaluated using multivariate ordination analysis.

Results

Bird assemblages differed between regional landscape contexts and most coastal forest types, although Melaleuca woodland bird assemblages were similar to those of eucalypt woodlands and rainforests. Structural connectivity was primarily correlated with differences in bird species composition between regional landscape contexts, and correlation depended on vegetation type and spatial scale.

Conclusions

Spatial scale, landscape context, and structural connectivity have a combined influence on bird species composition. This suggests that effective management of coastal landscapes requires a holistic strategy that considers the size, shape, and configuration of all vegetative components at multiple spatial scales.
  相似文献   

14.

Context

The local intensity of farming practices is considered as an important driver of biodiversity in agricultural landscapes and its effect on biodiversity has been shown to interact with landscape complexity. But the influence of landscape-wide intensity of farming practices on biodiversity and its combined effect with landscape complexity have been little explored.

Objective

In this study, we tested the interactive effect of the landscape-wide intensity of farming practices and landscape complexity on the local species richness and abundance of farmland wild bee communities.

Methods

We captured wild bees in 96 crop fields and explored the effect of landscape-wide intensity of various farming practices along a gradient of landscape complexity (proportion of semi-natural habitats).

Results

We found that species richness and abundance of wild bees were more positively influenced by landscape complexity in highly insecticide-sprayed landscapes than in less intensively managed landscapes. In contrast, we found that the positive effect of landscape complexity on bee species richness only occurred in landscapes with low nitrogen inputs.

Conclusions

Our study demonstrates the interactive effects of landscape-wide farming intensity and landscape complexity in shaping the diversity of farmland wild bee communities. We conclude that the management of farming intensity at the landscape-scale could mitigate the effects of habitat loss on wild bee decline and would help to maintain pollination services in agricultural landscapes.
  相似文献   

15.

Context

Habitat loss is a major threat to biodiversity. It can create temporal lags in decline of species in relation to destruction of habitat coverage. Plant species specialized in semi-natural grasslands, especially meadows, often express such extinction debt.

Objectives

We studied habitat loss and fragmentation of meadows and examined whether the changes in meadow coverage had caused an extinction debt on vascular plants. We also studied whether historical or present landscape patterns or contemporary environmental factors were more important determinants of species occurrence.

Methods

We surveyed the plant species assemblages of 12 grazed and 12 mown meadows in Central Finland and detected the meadow coverages from their surroundings on two spatial scales and on three time steps. We modelled the effects of functional connectivity, habitat amount, and isolation on species richness and community composition.

Results

We observed drastic and dynamic meadow loss in landscapes surrounding our study sites during the last 150 years. However, we did not find explicit evidence for an extinction debt in meadow plants. The observed species richness correlated with contemporary factors, whereas both contemporary factors and habitat availability during the 1960s affected community composition.

Conclusions

Effective conservation management of meadow biodiversity builds on accurate understanding of the relative importance of past and present factors on species assemblages. Both mown and grazed meadows with high species richness need to be managed in the future. The management effort should preferably be targeted to sites located near to each other.
  相似文献   

16.

Context

Amphibian metapopulations have become increasingly fragmented in the Midwestern United States, with wetland-breeding salamanders being especially dependent on intact, high-quality forested landscapes. However, the degree to which amphibian populations are isolated, the factors that influence dispersal and, ultimately, functional connectivity remain areas in need of investigation.

Objectives and methods

We combined population demographic and genetic approaches to assess how a landscape fragmented by agriculture influences functional connectivity and metapopulation dynamics of a locally threatened salamander (Ambystoma jeffersonianum).

Results

We found that the allelic richness and heterozygosity of this species was significantly related to the level of connectivity with other occupied breeding wetlands and that decreased connectivity resulted in increased genetic differentiation. We also found that effective population size appears to be declining and, while correlative, our focal landscape has experienced significant losses of forested upland habitats and potential wetland breeding habitats over the last 200 years.

Conclusions

By combining population and landscape genetic analyses with an assessment of regional wetland occupancy, our study has uniquely synthesized genetic and metapopulation processes, while also incorporating the effects of the landscape matrix on dispersal, connectivity, and population differentiation. The significant relationship between connectivity with heterozygosity, allelic richness, and genetic divergence observed in this study reinforces empirical observations of long distance dispersal and movements in ambystomatid salamanders. However, our results show that protection of core habitat around isolated wetlands may not sufficiently minimize genetic differentiation among populations and preserve critical genetic diversity that may be essential for the long-term persistence of local populations.
  相似文献   

17.

Context

The umbrella approach applied to landscape connectivity is based on the principle that the conservation or restoration of the dispersal habitats for some species also can facilitate the movement of others. Species traits alone do not seem to be enough to identify good connectivity umbrella species, showing the need to investigate the influence of additional factors on this property.

Objectives

We test whether the potential of a species as a connectivity umbrella can be influenced by landscape composition and configuration.

Methods

We simulated movement routes for eight hypothetical species in artificial patchy landscapes with different levels of fragmentation, habitat amount and matrix permeability. We determined the effectiveness of the connectivity umbrella of the virtual species using pairwise intersections of important habitats for their movements in all landscapes.

Results

The connectivity umbrella performance of all species was affected by the interaction of fragmentation level and habitat amount. In general, species performance increased with decreasing fragmentation and increasing habitat amount. In most landscapes and considering the same dispersal threshold, species able to move more easily through the matrix showed higher umbrella performance than those for which the matrix offered greater resistance.

Conclusions

The connectivity umbrella is not a static feature that depends only on the species traits, but rather a dynamic property that also varies according to the landscape attributes. Therefore, we do not recommend spatial transferability of the connectivity umbrella species identified in a landscape to others that have divergent levels of fragmentation and habitat quantity.
  相似文献   

18.

Context

Anthropogenic landscape simplification and natural habitat loss can negatively affect wild bees. Alternatively, anthropogenic land-use change may diversify landscapes, creating complementary habitats that maintain overall resource continuity and diversity.

Objectives

We examined the effects of landscape composition, including land-cover diversity and percent semi-natural habitat, on wild bee abundance and species richness within apples, a pollinator-dependent crop. We also explored whether different habitats within diverse landscapes can provide complementary floral resources for bees across space and time.

Methods

We sampled bees during apple bloom over 2 years within 35 orchards varying in surrounding landscape diversity and percent woodland (the dominant semi-natural habitat) at 1 km radii. To assess habitat complementarity in resource diversity and temporal continuity, we sampled flowers and bees within four unique habitats, including orchards, woodlands, semi-natural grasslands, and annual croplands, over three periods from April–June.

Results

Surrounding landscape diversity positively affected both wild bee abundance and richness within orchards during bloom. Habitats in diverse landscapes had different flower communities with varying phenologies; flowers were most abundant within orchards and woodlands in mid-spring, but then declined over time, while flowers within grasslands marginally increased throughout spring. Furthermore, bee communities were significantly different between the closed-canopy habitats, orchards and woodlands, and the open habitats, grasslands and annual croplands.

Conclusions

Our results suggest that diverse landscapes, such as ones with both open (grassland) and closed (woodland) semi-natural habitats, support spring wild bees by providing flowers throughout the entire foraging period and diverse niches to meet different species’ requirements.
  相似文献   

19.

Context

We address the issue of adapting landscapes for improved insect biodiversity conservation in a changing climate by assessing the importance of additive (main) and synergistic (interaction) effects of land cover and land use with climate.

Objectives

We test the hypotheses that ant richness (species and genus), abundance and diversity would vary according to land cover and land use intensity but that these effects would vary according to climate.

Methods

We used a 1000 m elevation gradient in eastern Australia (as a proxy for a climate gradient) and sampled ant biodiversity along this gradient from sites with variable land cover and land use.

Results

Main effects revealed: higher ant richness (species and genus) and diversity with greater native woody plant canopy cover; and lower species richness with higher cultivation and grazing intensity, bare ground and exotic plant groundcover. Interaction effects revealed: both the positive effects of native plant canopy cover on ant species richness and abundance, and the negative effects of exotic plant groundcover on species richness were greatest at sites with warmer and drier climates.

Conclusions

Impacts of climate change on insect biodiversity may be mitigated to some degree through landscape adaptation by increasing woody native vegetation cover and by reducing land use intensity, the cover of exotic vegetation and of bare ground. Evidence of synergistic effects suggests that landscape adaptation may be most effective in areas which are currently warmer and drier, or are projected to become so as a result of climate change.
  相似文献   

20.

Context

Protected areas are a cornerstone of the global strategy for conserving biodiversity, and yet their efficacy in comparison to unprotected areas is rarely tested. In the highly fragmented forests of temperate regions, landscape context and forest history may be more important than protection status for plant species diversity.

Objectives

To determine whether there are differences in plant diversity between protected areas and private lands while controlling for landscape context, forest age, and other important factors.

Methods

We used a database of 156 one-hectare forest plots distributed over 120,000 km2 in the fragmented forests of southern Ontario to test whether protected areas and private forests differed in native species richness, relative abundance of exotic species, and the probability of finding species of conservation concern.

Results

Plots with more forest on the surrounding landscape had higher native species richness, lower abundance of exotic species, and greater probability of supporting at least one species of conservation concern. Young forests tended to have higher abundance of exotics, and were less likely to support species of conservation concern. Surprisingly, privately owned forests had greater native species richness and were more likely to support species of conservation concern once these other factors were accounted for. In addition, there were significant interactions between ownership type, forest history, and landscape context.

Conclusions

Our results highlight the importance of privately owned forests in this region, and the need to consider forest history and landscape context when comparing the efficacy of protected areas versus private land for sustaining biodiversity.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号