首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seedlings ofEucalyptus viminalis were grown for 50 days with their stems bent so tension wood would form. Every 10 days the lignin content, monomeric composition, and peroxidase activity in the tension wood were compared with those in the lower side (opposite wood) and in vertically grown controls. The lignin content in the developing tension wood started to decrease after 10 days of bending and kept decreasing for 50 days, whereas those in control plants and opposite wood remained almost unchanged. The yields of syringaldehyde from tension wood by nitrobenzene oxidation increased, and consequently the syringyl/ guaiacyl ratio of the lignin was higher in tension wood than in opposite wood and control plants. The peroxidase ionically bound to the cell walls (IPO) catalyzed oxidation of guaiacol and syringaldazine. The syringaldazineoxidizing activity of IPO from tension wood increased, whereas the activities of IPO from opposite wood and control plants did not show any marked change. In tension wood the increase in syringaldazine-oxidizing activity of IPO was consistent with an increase in the syringaldehyde yield. This suggests that IPO contributes to syringyl lignin deposition as other enzymes involved in the monolignol biosynthesis do in tension wood formation.This study was presented at the 50th Annual Meeting of the Japan Wood Research Society, Kyoto, April 2000  相似文献   

2.
Angiosperm trees bend their stems by forming tension wood at the upper side of leaning stems. Most tension wood has a cellulose-rich G-layer in the innermost surface of the fiber cell wall. Strong tensile stress is considered to occur in the G-layer. This study undertook to identify the proteins involved in G-layer formation and function through a proteomic analysis of G-layer-localized protein. G-layers of poplar were loosened by sonication and isolated as doughnut-shaped pieces of thinly sliced transverse sections. The proteins, once extracted with urea/detergent solution, were separated by two-dimensional polyacrylamide gel electrophoresis, and 110 spots were subjected to liquid chromatography tandem mass spectrometry (LC/MS/MS). A database search for these spots’ mass spectrum patterns identified 72 proteins. In addition, all peptide digestion mixtures of G-layer proteins were separated by strong cation exchange chromatography and 39 proteins were identified using LC/MS/MS analysis. Proteins involved in wall formation, such as lignin biosynthesis-related protein, xyloglucan endotransglucosylase, and fasciclin-like arabinogalactan protein, were notably detected in the G-layer.  相似文献   

3.
To discuss the role of the gelatinous layer (G-layer) on the origins of the physical properties peculiar to the tension wood fiber (TW fiber), the deformation process of an isolated TW fiber caused by a certain biomechanical state change was formulated mathematically. The mechanical model used in the present formulation is a four-layered hollow cylinder having the compound middle lamella (CML), the outer layer of the secondary wall (S1) and its middle layer (S2), and the G-layer (G) as an innermost layer. In the formulation, the reinforced matrix mechanism was applied to represent the mechanical interaction between the cellulose microfibril (CMF) as a framework bundle and the amorphous substance as a matrix skeleton in each layer. The model formulated in the present study is thought to be useful to investigate the origins of extensive longitudinal drying shrinkage, large tensile growth stress, and a high axial elastic modulus, which are rheological properties peculiar to the TW. In this article, the detailed process of the mathematical formulation is described. In a subsequent article, some TW properties from a 70-year-old Kohauchiwakaede (Acer sieboldianum Miq.) will be analyzed using the newly developed model.  相似文献   

4.
The lignification process and lignin distribution at different stages of cell wall differentiation in the secondary xylem of compression and normal woods of Pinus thunbergii were investigated by thioacidolysis and subsequent desulfuration. We prepared 50-µm-thick, contiguous tangential sections of pine shoots, cut from the cambial zone through to mature xylem. In compression wood, uncondensed guaiacyl (G) and p-hydroxyphenyl (H) lignins were deposited simultaneously from early to late stages of lignification. The various types of G-G, G-H, and H-H dimers were detected in compression wood, and the ratio of G-H and H-H dimers to total dimers increased as lignification proceeded. In contrast, uncondensed and condensed H units were detected in trace amounts in normal wood. Significant differences in the relative distributions of lignin interunit linkages were not observed between compression and normal woods or between differentiating and mature xylems in either compression or normal woods.Part of this report was presented at the 10th International Symposium on Wood and Pulping Chemistry, Yokohama, June, 1999  相似文献   

5.
The detachment of the gelatinous layer (G-layer), often observed on microtome cross sections, has led some authors to believe that the G-layer cannot act as the driving force of longitudinal shrinkage in tension wood. The aim of this study was to observe the detachment of the G-layer along fibers. Green wood blocks were cut transversely into two samples. One sample was kept in water and the other was oven-dried. With one face being common to both samples, the detachment of the G-layer was studied on the same fibers. Observations were performed after blocking deformation by embedding. This revealed that the detachment of the G-layer is an effect produced by the act of cutting the transverse face of the wood block to be embedded. At distances greater than 100 µm from this primary surface of the sample, no detachment was observed. Drying shrinkage shows little or no effect on this detachment. The result seems to explain well why the detachment of the G-layer occurs during sectioning using conventional sliding microtomy. These observations prove the adhesion of the G-layer in massive wood and confirm the active role of the G-layer in tension wood properties.  相似文献   

6.
The tangential strain on the inner bark surface of Fagus crenata sapling stems was continuously measured using strain gauges. The total strain increased daily, increasing at night and decreasing during the day. When tension wood was induced by artificial inclination, the strain increased more on the upper side than on the lower side; and the increment in the strain at night was larger on the upper side than on the lower. The change in tangential strain on the inner bark surface arose from changes in the water content and the volume of differentiating cells. Differentiating tension wood fibers appear to contain more water and to expand more at night than differentiating normal wood fibers. We can determine whether tension wood is formed from the tangential strain during growth.  相似文献   

7.
This study examined how boiling and drying treatments influenced various physical properties of the tension wood with gelatinous fibers (G-fibers) of a 29-yearold Zelkova branch. By boiling treatment, tension wood with numerous G-fibers contracted considerably in the longitudinal direction and the longitudinal Young’s modulus decreased in spite of the water-saturated condition. The drying treatment caused green tension wood and boiled tension wood with numerous G-fibers to shrink longitudinally and increased their longitudinal Young’s moduli. These specific behaviors in tension wood were highly correlated with the proportion of G-fibers in a specimen and were probably caused by the microscopic behavior of cellulose microfibril (CMF) in the gelatinous layers (G-layers). The longitudinal shrinkage of tension wood due to drying suggests the existence of a hygro-sensible, noncrystalline region in the CMF, which is abundant in the G-layer. Furthermore, the noncrystalline region in the CMF softens during boiling treatment, resulting in the reduction of the longitudinal Young’s modulus in tension wood. The longitudinal contraction of tension wood with G-fibers by boiling might be caused by the tensile growth stress remaining in green G-layers. However, no changes were detected in the 004 d-spacing of cellulose crystal in tension wood from the boiling and drying treatments, regardless of the proportion of G-fibers.  相似文献   

8.
The ability of the pine wood nematode,Bursaphelenchus xylophilus, a pathogen that causes pine wilt disease, to kill cortical cells of Japanese black pine,Pinus thunbergii, during early development of the disease was conjectured to be a function of nematode developmental stage. A tangential segment of bark was removed from a 2-cm-long current-year stem. The cortex-exposed segments with cut cortical resin canals were designated as + RC-segments and those without them as − RC-segments. When a nematode population containing many older juveniles and adults (NL) was inoculated onto the cut surface, the − RC-segments were still alive 4 d after inoculation, as were non-inoculated control segments. When cortex-exposed segments were inoculated with either a nematode population containing many younger nematodes (NS) or with nematodes isolated from inoculated pine cuttings that also contained many younger juveniles, most tissue cells in − RC-segments died 4 d after inoculation, suggesting that younger juveniles killed pine cells directly, in contrast with older juveniles and adults. When nematodes were inoculated onto + RC-segments in which they could easily enter resin canals, both NL and NS killed the segment tissues. This suggests that NL is pathogenic to pine cells while living in resin canals. Such differences in the pathogenicity of NL and NS to pine parenchymatous cells were also demonstrated in a pathogenicity assay system using bark peelings, which allowed an estimate of direct attack on the cambial cells by nematodes. Based on these results, we hypothesize that younger juveniles are pathogenic to pine parenchymatous cells, while adults and older juveniles are not pathogenic. This work was supported in part by Grants-in-Aid for Scientific Research (No.01440012 and 06454088) and for Young Scientists (to K.I.) from Ministry of Education, Science, Culture, and Sports of Japan, and by a grant from PROBRAIN.  相似文献   

9.
杨木应拉木微区结构可视化及化学成分分析   总被引:1,自引:0,他引:1  
木材微区结构与木材宏观性质密切相关,杨木应拉木与对应木宏观性质存在较大差别,探究杨木应拉木和对应木微区结构和化学成分,可为了解杨木应力木的宏观性质提供理论根据。借助光学显微镜、荧光显微镜、显微拉曼成像光谱仪、透射电镜对杨木应拉木微区结构进行可视化研究,并借助X射线衍射技术和美国可再生能源实验室方法,分析杨木应拉木的微晶尺寸、结晶度以及化学成分。结果表明:杨木应拉木中应拉区和对应区纤维细胞微区结构差异显著。光学显微镜下显示应拉区木纤维中胶质层清晰可见,荧光显微镜和拉曼显微镜下显示胶质层的木质素浓度比对应区低。透射电镜下显示应拉区木纤维细胞壁结构由初生壁、次生壁和胶质层组成,未见次生壁外层,各层的平均厚度分别为0.61,1.22和2.53μm。对应区木纤维为典型的初生壁和次生壁结构,次生壁各层平均厚度分别为0.33,2.28和0.14μm。杨木应拉区纤维素含量(58.91%)比对应区(41.53%)高,木质素含量和半纤维素含量均比对应区的低,应拉区木质素和半纤维素含量分别为21.99%和12.01%,对应区分别为28.10%和17.08%。杨木应拉区结晶度(48.06%)比对应区(41.01%)高,应拉区晶区宽度为2.66 nm,长度为8.84 nm;对应区晶区宽度为2.65 nm,长度为9.87 nm。  相似文献   

10.
Of all plant materials used to cover the roofs of traditional Japanese buildings, Japanese cypress (Chamaecyparis obtusa) bark, hiwada, has the longest service life and has been used from ancient times. However, wood and bark properties after hiwada harvest have not been evaluated in detail. We studied whether decortication for hiwada production in winter affected xylem and phloem formation. Decorticated trees still preserved all inner bark and part of the outer bark, and both decorticated and control trees had similar annual ring structures at all stem heights in the xylem and phloem. In both xylem and inner bark, no significant difference in ring width at any stem height was found between annual rings before and after decortication. Thus, this study revealed that the decortication of bark for hiwada production does not affect the formation of xylem and the inner and outer bark if decortication is carried out by highly skilled workers in winter.  相似文献   

11.
Within-tree variations of derived wood properties of Runkel ratio, Luces shape factor, slenderness ratio, and solids factor were examined for Eucalyptus camaldulensis and Eucalyptus globulus trees and the tendency difference in the within-tree variations between individuals and between species, in both radial and axial directions by statistical data analysis. These properties are important for quality breeding of pulpwood. In both species, within-tree variations were generally observed as higher values in the upper and outer parts compared with other parts of the trunk for Runkel ratio and Luces shape factor. In E. camaldulensis, within-tree variations were observed as higher values in the upper and outer parts compared with other parts of the trunk for slenderness ratio and solids factor. In E. globulus, within-tree variations were observed as higher values in the outer parts compared with other parts for slenderness ratio and solids factor. However, significant difference of tendency was observed in radial variation between individuals of E. globulus for Runkel ratio and in both radial and axial variations between species for solids factor. Furthermore, within-tree variations of derived wood properties were analyzed to determine a sampling height in the trunk which can be used to represent whole-tree values. Representative heights of derived wood properties from two trees were found to be 2.8m in E. camaldulensis (except for Runkel ratio and Luces shape factor) and 1.8m in E. globules (except for Runkel ratio), regardless of differences in tree height (growth rate) and in tendency of within-tree variation of derived wood properties.  相似文献   

12.
Morphological changes in the cytoskeleton, nuclei, and vacuoles were monitored during the cell death of short-lived ray tracheids in the conifer Pinus densiflora. After formation of the dentate thickenings that occurred at the final stage of formation of cell walls, organelles started to disappear in differentiating ray tracheids. First, the microtubules and vacuoles disappeared. Then actin filaments disappeared in the differentiating ray tracheids adjacent to ray tracheids that lacked nuclei, and, finally, the nuclei disappeared. These features indicate that cell death in ray tracheids might differ from the programmed cell death of tracheary elements that has been studied in vitro in the Zinnia culture system. This study was presented at the 57th Annual Meeting of the Japan Wood Research Society, August 8–10, 2007, Hiroshima, Japan  相似文献   

13.
This article describes the effect of day length during the photoperiodic cycle on the diurnal differences in the innermost surface of developing secondary walls. Saplings of Cryptomeria japonica D. Don. were grown in growth chambers at constant temperature and relative humidity, but with different photoperiods. Samples of differentiating xylem were collected during the light and dark periods. The innermost surface of developing secondary walls in differentiating tracheids were observed using field emission scanning electron microscopy, and observations made during the light and dark periods were compared. In the saplings grown under long-day or short-day conditions, diurnal differences in aspects of the innermost surface of developing secondary walls were observed. Cellulose microfibrils were observed on the innermost surface of developing secondary walls during the light period when the volumes of differentiating cells were low, and amorphous material was observed during the dark period, when differentiating tracheids were turgid. The amorphous material was labeled with antiglucomannan antiserum. These results suggest that the range of day-length conditions set in this study does not affect the diurnal periodicity in the supply of cell wall components to the innermost surface of developing secondary walls.  相似文献   

14.
The interactions between pine wood nematode and three bacterium strains isolated from the nematode, Bursaphelenchus xylophilus, which are two strong pathogenic bacterium strains, Pseudomonas fluorescens GcM5-1A and Pseudomonas putida ZpB1-2A and a weak-pathogenic bacterium strain, Pantoea sp. ZM2C, were studied. The result showed that the strong-pathogenic GcM5-1A strain and ZpB1-2A strain significantly increased fecundity, reproduction rate, and the body volume of the adult nematode. Meanwhile, pine wood nematodes significantly promoted reproduction of the two strong-pathogenic bacterium strains. However, the weak-pathogenic bacterium strain, ZM2C, completely inhibited reproduction of pine wood nematodes. Aseptic pine wood nematodes significantly inhibited reproduction of the strain ZM2C. The results indicated that mutualistic symbiosis exists between pine wood nematodes and the two pathogenic bacteria it carries. The phenomenon showed that the pathogenic bacteria carried by the nematode were not accidentally contaminated, but rather had existed as symbionts of the nematode with which it had coevoluted over a long period. The role of mutualistic symbiosis in the process of pine wilt disease was also discussed. __________ Translated from Journal of Nanjing Forestry University, 2005, 29(3): 1–4 [译自: 南京林业大学学报, 2005, 29(3): 1–4]  相似文献   

15.
This study considered the effects of thinning on the development of compression wood in stems of 35-year-old stand of Corsican pine (Pinus nigra L.). Part of the stand had been thinned at 5-yearly intervals and part left unthinned. Twenty trees each from the thinned and unthinned stands were randomly selected and felled. Measurements were made on tree height, stem diameter, stem slenderness and canopy depth. Wood samples were removed from the central part of the main log and cross-sectional measurements made on ring width, basic density and compression wood content. Cross-sectional area of compression wood was found to be three time higher in stems from the unthinned trees in comparison with those from the thinned trees. No significant differences in mean radial ring width or basic density were found between treatments. Correlations indicated that, with increasing in stem diameter, compression wood content increased in the unthinned trees, while a decline in compression was observed in the thinned trees. Tree height was also positively correlated with compression wood content in unthinned trees, while no equivalent relationship was observed in thinned trees. Observations from this study, while not conclusive, suggest that phototropic stimulus may be producing stem inclinations in the unthinned stand as trees compete for space in the canopy, whereas crown competition has been largely eliminated in the thinned stand; and that this is responsible for compression wood levels recorded in this study.  相似文献   

16.
We studied radial and inter-progeny variations in the dimensions of the wood elements and specific gravity of 21 half sib progenies of Populus deltoides Bartr. ex Marsh. The female parents of half sibprogenies were G48 and S7C13 clones. Variance ratio (F) test indicated that inter-progeny variations in the dimensions of wood elements andspecific gravity were significant for all wood traits while variations were significant for radial location for specific gravity only. Hierarchical cluster analysis was done by Squared Euclidean Distance for all of 21 progenies considering six wood traits. 21 progenies were grouped into 4 clusters. Cluster 1 was the largest cluster with 11 progenies, whereas cluster 3 had only one progeny. Selected progenies in clusters 3 (progeny 155,male) and 4 (progeny 108, 196, both female) were highly divergent from the other progenies so they were used in combinations as parents of hybrids to develop new clones with desired characters. Progeny 155 showed higher growth, fiber dimensions, and specific gravity, thus,should be used for the development of new clones.  相似文献   

17.
Cortical microtubules (MTs) in differentiating compression wood tracheids of Taxus cuspidata stems were visualized by confocal laser microscopy. They were oriented obliquely at an angle of about 45° to the tracheid axis during formation of the secondary wall. Artificial inclination altered the pattern of alignment of MTs. Banding MTs were helically oriented late during the formation of the secondary walls. These results indicate that MTs might control the orientation and localized deposition of cellulose microfibrils in the secondary walls of compression wood tracheids.Part of this report was presented at the 46th annual meeting of the Japan Wood Research Society, Kumamoto, April 1996  相似文献   

18.
An analysis of cellulose crystallite width, microfibril angle and wood density after the time of thinning (at 8 years) in straight vertical trees was undertaken in a 13-year-old E. globulus trial designed to assess the effect of thinning on tension wood formation. The most important effect was on cellulose crystallite width, which increased with thinning intensity and this was mitigated where fertilizer was applied at the time of thinning. Given the relationship between high crystallite width and tension wood occurrence the results demonstrate that heavy thinning of E. globulus at this age can contribute to tension wood formation. However, tension wood production may be significantly reduced where fertilizer is applied. This is possibly because increased diameter growth as a response to fertilizer application stabilises the stems and this is the mechanism by which trees cope with internal stresses that are generated from wind in destabilsed stands following thinning. In contrast, trees that respond poorly to thinning produce tension wood.  相似文献   

19.
To examine the differences between juvenile and mature wood, 12 aged sample trees from two areas of Nagano Prefecture were harvested; and the radial development of tracheid length, the ring density, and the relation of the radial growth rate (observed by ring width) with some selected indices of ring structure were investigated. The results proved that the radial variation of tracheid length with ring number can be described by a logarithmic formula, and both plantations reached the demarcation of juvenile and mature wood at age 18. With the segmented regression method, we also analyzed radial variation of mean density and found that the demarcation of juvenile and mature wood was at age 15 for sample trees from Saku and at age 21 for those from Yabuhara. By using the results of estimates from juvenile and mature wood based on ring density, we found that high growth rates resulted when producing lower-density wood during the juvenile period, but these rates did not occur during the mature period. The basic reason for this phenomenon is the variation in patterns of earlywood and latewood in juvenile and mature wood, respectively. This result advised us that when managing plantations of Japanese larch it is necessary to take different measurements at different growth periods.  相似文献   

20.
Three different methods were evaluated for analysing wood formation of Norway spruce [Picea abies (L.) Karst.] and Scots pine (Pinus sylvestris L.) in Finland. During two growing seasons, wood formation dynamics were determined both by wounding the cambium with a needle followed by localisation of the wound-associated tissue modification after the growing season (pinning), and by extracting small increment cores during the growing season (microcoring). Stem radius was additionally monitored with band dendrometers. For Norway spruce, pinning and microcoring yielded similar dates for the onset of wood formation. The timing of wood production during the growing season was also similar for pinning and microcoring. For Scots pine, the onset of wood formation was recorded from microcores almost 2 weeks later than from pinning samples. In Scots pine, microcore measurements also produced somewhat later cessation dates for tracheid formation than the pinning samples. For both tree species, the total number of tracheids formed during the growing season was, however, about the same for pinning and microcoring. Dendrometer results clearly differed from those of pinning and microcoring. In particular, the dendrometers showed an increase of stem radius considerably earlier in spring, when the other methods did not detect wood formation. Thus, pinning and microcoring currently represent the most reliable techniques for detailed monitoring of wood formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号