首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 709 毫秒
1.
Hard x-ray pulses or increased cosmic radiation originating in nearby supernova explosions may be capable of temporarily removing most of the earth's atmospheric ozone cover even when direct radiation effects at the earth's surface are negligible. Consequently, terrestrial life may be subject to relatively huge solar ultraviolet fluxes every few hundred million years.  相似文献   

2.
Faunal changes observed in association with reversals of the geomagnetic field have been attributed to increased radiation dosages produced by cosmic rays when the field intensity is greatly reduced. However, at currently observed cosmic ray and solar particle intensities, the additional dosages produced at sea level during a period of complete removal of the geomagnetic field are negligible. Furthermore, even complete dumping of the energetic particle in the radiation belts would not give rise to the necessary increased dosages.  相似文献   

3.
The bulk of the sun's radiation is in the visible and infrared. Solar radiation at these wavelengths controls the weather in the lowest levels of the earth's atmosphere. The rate at which this energy is emitted (the so-called solar constant) varies by a few tenths of 1 percent over a time scale of days. Longer period variations may exist, but have yet to be detected. Far more variable are the amounts of energy emitted as ultraviolet, extreme ultraviolet, and x-rays, and in the continuous outflow of ionized solar particles. The latter controls the properties of the space between the earth and the sun as well as those of the earth's magnetosphere. The ultraviolet and particle emissions control the properties of the earth's upper atmosphere, including the global wind circulation and changes therein associated with intense auroral storms. While considerable progress has been made in exploring the solar-terrestrial system since the advent of space research, many problems remain. These include the question of how magnetic energy is converted into ionized particle energy in the sun and in the earth's magnetosphere, the way in which solar and terrestrial magnetic fields join or merge, and how large electric fields are generated and sustained a few thousand kilometers above the earth's poles. Perhaps the most intriguing question concerns the possible relation between solar variability and the earth's weather and climate.  相似文献   

4.
Markson R 《Science (New York, N.Y.)》1975,188(4194):1171-1177
Relatively simple atmospheric electrical instrumentation carried on a small aircraft constitutes a flexible and sensitive system for detecting organized convection. Data can be obtained close to the sea surface, and low-velocity flight enhances the spatial resolution. With a slow-flying airplane or powered glider, it may be possible to trace the circulation of individual convection cells and to investigate the trajectory of air which forms cumulus clouds, one of the major unsolved problems in tropical meteorology. Since space charge near the ocean surface was found on some days to be organized on a horizontal scale equivalent to the cumulus cloud scale, this suggests that some of the air which forms maritime cumulus clouds may come from within a few meters of the ocean and that atmospheric electrical instrumentation may have the potential for tracing air from the sea surface to the clouds. Although the atmospheric electrical instrumentation technique described here cannot be used for direct measurement of air velocity, it may be possible to develop model that can be used to calculate air velocities from electric field data. Even though with the technique described here it is not possible to make direct measurements of wind velocity, airborne electric field records can provide useful information about convection by delineating patterns in the wind field and structural features of thermals (rising bodies of relatively warm air) and by making possible the remote detection of thermals (29). Future plans include attempting to trace interfaces between adjacent roll vortices from the sea surface through the depth of the mixed layer (i) by flying the aircraft parallel to the wind so as to nullify the horizontal electric field (measured between wing-tip probes) while ascending and descending along the interface between adjacent roll vortices and (ii) by measuring vertical and horizontal potential gradient variations at different flight levels (30). The sensitivity of atmospheric electrical instrumentation to the top of the mixed layer and structure within it can be used to explore another important problem in boundary layer convection-why convective cloud cover and oceanic rainfall are greater at night than during the day(31). Workers in atmospheric electricity have long recognized that their domain is strongly controlled by turbulence in the lower atmosphere, and many have believed that the most effective use of atmospheric electrical techniques to assist meteorological research would be in studying exchange processes. Reiter [see (8)] effectively extended atmospheric electrical studies of boundary layer phenomena through a height range by mounting instruments on cable cars traveling between the valley floor and mountain tops in the Alps. The airborne measurements described here extend this approach. Relating the electrical structure of the atmosphere to its dynamic structure poses an interesting problem which may contribute to our understanding of the atmosphere.  相似文献   

5.
Observations of galactic cosmic radiation and anomalous component nuclei with charged particle sensors on the Ulysses spacecraft showed that heliospheric magnetic field structure over the south solar pole does not permit substantially more direct access to the local interstellar cosmic ray spectrum than is possible in the equatorial zone. Fluxes of galactic cosmic rays and the anomalous component increased as a result of latitude gradients by less than 50% from the equator to -80 degrees . Thus, the modulated cosmic ray nucleon, electron, and anomalous component fluxes are nearly spherically symmetric in the inner solar system. The cosmic rays and the anomalous nuclear component underwent a continuous, -26 day recurrent modulation to -80.2 degrees , whereas all recurring magnetic field compressions and recurring streams in the solar wind disappeared above approximately 55 degrees S latitude.  相似文献   

6.
Recent Ulysses observations from the Sun's equator to the poles reveal fundamental properties of the three-dimensional heliosphere at the maximum in solar activity. The heliospheric magnetic field originates from a magnetic dipole oriented nearly perpendicular to, instead of nearly parallel to, the Sun's rotation axis. Magnetic fields, solar wind, and energetic charged particles from low-latitude sources reach all latitudes, including the polar caps. The very fast high-latitude wind and polar coronal holes disappear and reappear together. Solar wind speed continues to be inversely correlated with coronal temperature. The cosmic ray flux is reduced symmetrically at all latitudes.  相似文献   

7.
Voyager 1 crossed the termination shock of the supersonic flow of the solar wind on 16 December 2004 at a distance of 94.01 astronomical units from the Sun, becoming the first spacecraft to begin exploring the heliosheath, the outermost layer of the heliosphere. The shock is a steady source of low-energy protons with an energy spectrum approximately E(-1.41 +/- 0.15) from 0.5 to approximately 3.5 megaelectron volts, consistent with a weak termination shock having a solar wind velocity jump ratio r=2.6(-0.2)(+0.4). However, in contradiction to many predictions, the intensity of anomalous cosmic ray (ACR) helium did not peak at the shock, indicating that the ACR source is not in the shock region local to Voyager 1. The intensities of approximately 10-megaelectron volt electrons, ACRs, and galactic cosmic rays have steadily increased since late 2004 as the effects of solar modulation have decreased.  相似文献   

8.
Kota J  Jokipii JR 《Science (New York, N.Y.)》1995,268(5213):1024-1025
Three-dimensional simulations of the heliospheric modulation of galactic cosmic ray protons show that corotating variations in the intensity can persist to quite high heliographic latitudes. Variations are seen at latitudes considerably higher than the maximum latitude extension of the heliographic current sheet, in regions where the solar wind velocity and magnetic field show no significant variation. Similar conclusions may apply also to lower energy particles, which may be accelerated at lower latitudes. Cosmic ray variations caused by corotating interaction regions present at low heliographic latitudes can propagate to significantly higher latitudes.  相似文献   

9.
SOLTRAN is a flexible computer model for the direct solar beam intensity spectrum at the earth's surface. It has been derived by combining the extra-terrestrial solar spectrum with the atmospheric transmittance spectrum. Application of SOLTRAN to the calculation of the potential efficiency of photovoltaic cells demonstrates the effect of atmospheric absorption bands. These bands prevent unequivocal assignment of optimum energy gap values.  相似文献   

10.
The gravitational field of the sun acts as a spherical lens to magnify the intensity of radiation from a distant source along a semi-infinite focal line. A spacecraft anywhere on that line in principle could observe, eavesdrop, and communicate over interstellar distances, using equipment comparable in size and power with what is now used for interplanetary distances. If one neglects coronal effects, the maximum magnification factor for coherent radiation is inversely proportional to the wavelength, being 100 million at 1 millimeter. The principal difficulties are that the nearest point on the focal half-line is about 550 times the sun-earth distance, separate spacecraft would be needed to work with each stellar system of interest, and the solar corona would severely limit the intensity of coherent radiation while also restricting operations to relatively short wavelengths.  相似文献   

11.
It has been proposed that Earth's climate could be affected by changes in cloudiness caused by variations in the intensity of galactic cosmic rays in the atmosphere. This proposal stems from an observed correlation between cosmic ray intensity and Earth's average cloud cover over the course of one solar cycle. Some scientists question the reliability of the observations, whereas others, who accept them as reliable, suggest that the correlation may be caused by other physical phenomena with decadal periods or by a response to volcanic activity or El Ni?o. Nevertheless, the observation has raised the intriguing possibility that a cosmic ray-cloud interaction may help explain how a relatively small change in solar output can produce much larger changes in Earth's climate. Physical mechanisms have been proposed to explain how cosmic rays could affect clouds, but they need to be investigated further if the observation is to become more than just another correlation among geophysical variables.  相似文献   

12.
干燥箱是农业物料进行太阳能热风干燥的关键装置,其结构合理性直接影响物料干燥的品质和效率。为提升干燥效果,以太阳能热风干燥箱物理场分布的均匀程度为研究对象,采用试验和COMSOL数值模拟相结合的方法,对箱体内风速场、温度场的分布特点进行分析,并根据分析结果完成干燥箱结构优化。结果表明,COMSOL模拟仿真所得风速和温度的分布规律与试验结果一致,可用于准确模拟干燥箱内物理场。依托该模拟分析方法,提出了改变进风口位置、添加带孔挡流板、构建隔断式气室的优化设计方案,将干燥箱内风速场分布的不均匀系数降至了10%以下,有效保证了物料干燥的均匀性。上述结果可为太阳能热风干燥设备的结构改进提供参考。  相似文献   

13.
Sample 10084,40 (fines, less than 1 millimeter) contains substantial amounts of the inert gases. Their concentrations are inversely proportional to particle size; hence the gases appear to be surface-correlated in the soil fragments. The most likely origin of the gas is solar wind or solar cosmic rays. Glass and feldspar are generally poorer in gas than lithic fragments. Ratios of elements in the sample differ significantly from solar values. Ratios of isotopes in the sample are similar to those in meteorites. Argon-40 appears to consist of a radiogenic and a surface-correlated component. An apparent potassium-argon age of 4.42(+0.24)(-0.28) billion years is calculated.  相似文献   

14.
Changes in stratospheric ozone   总被引:2,自引:0,他引:2  
The ozone layer in the upper atmosphere is a natural feature of the earth's environment. It performs several important functions, including shielding the earth from damaging solar ultraviolet radiation. Far from being static, ozone concentrations rise and fall under the forces of photochemical production, catalytic chemical destruction, and fluid dynamical transport. Human activities are projected to deplete substantially stratospheric ozone through anthropogenic increases in the global concentrations of key atmospheric chemicals. Human-induced perturbations may be occurring already.  相似文献   

15.
Lyon JG 《Science (New York, N.Y.)》2000,288(5473):1987-1991
The solar wind, magnetosphere, and ionosphere form a single system driven by the transfer of energy and momentum from the solar wind to the magnetosphere and ionosphere. Variations in the solar wind can lead to disruptions of space- and ground-based systems caused by enhanced currents flowing into the ionosphere and increased radiation in the near-Earth environment. The coupling between the solar wind and the magnetosphere is mediated and controlled by the magnetic field in the solar wind through the process of magnetic reconnection. Understanding of the global behavior of this system has improved markedly in the recent past from coordinated observations with a constellation of satellite and ground instruments.  相似文献   

16.
I have proposed that the precessional torques acting on the earth can sustain a turbulent hydromagnetic flow in the molten core. A gross balance of the Coriolis force, the Lorentz force, and the precessional force in the core fluid provided estimates of the fluid velocity and the interior magnetic field characteristic of such flow. Then these numbers and a balance of the processes responsible for the decay and regeneration of the magnetic field provided an estimate of the magnetic field external to the core. This external field is in keeping with the observations, but its value is dependent upon the speculative value for the electrical conductivity of core material. The proposal that turbulent flow due to precession can occur in the core was tested in a study of nonmagnetic laboratory flows induced by the steady precession of fluid-filled rotating spheroids. It was found that these flows exhibit both small wavelike instabilities and violent finite-amplitude instability to turbulent motion above critical values of the precession rate. The observed critical parameters indicate that a laminar flow in the core, due to the earth's precession, would have weak hydrodynamic instabilities at most, but that finite-amplitude hydromagnetic instability could lead to fully turbulent flow.  相似文献   

17.
南京开花期稻田贴地层微气象特征研究   总被引:3,自引:1,他引:2  
刘寿东  李仁忠  胡凝 《安徽农业科学》2008,36(16):6701-6703
[目的]揭示南京水稻开花期稻田贴地层的微气象规律。[方法]利用南京开花期稻田微气象观测资料,分析稻田贴地层温、风垂直分布特征,大气稳定度状况和动力粗糙度特征。[结果]南京开花期稻田白天温度垂直分布分为日射型、弱辐射型和过渡型3个类型,强光条件下冠层附近温度垂直变化明显,冠层温度比冠层上方气温最大可高出5.9℃。稻田较强的蒸腾和蒸发导致贴地层大气温度垂直变化幅度不大,开花期稻田大气层结比较稳定,中性或近中性层结占70%。开花期稻田风速垂直分布符合对数规律,摩擦速度和粗糙度与风速的关系十分密切,摩擦速度随风速递增,粗糙度高度则随风速递减,南京开花期稻田粗糙度平均为0.1 m。[结论]研究结果可为揭示稻田的湍流运动规律提供科学依据。  相似文献   

18.
Nitrous oxide, methane, ammonia, and a number of other trace constituents in the earth's atmosphere have infrared absorption bands in the spectral region 7 to 14 microm and contribute to the atmospheric greenhouse effect. The concentrations of these trace gases may undergo substantial changes because of man's activities. Extensive use of chemical fertilizers and combustion of fossil fuels may perturb the nitrogen cycle, leading to increases in atmospheric N(2)O, and the same perturbing processes may increase the amounts of atmospheric CH(4) and NH(3). We use a one-dimensional radiative-convective model for the atmospheric thermal structure to compute the change in the surface temperature of the earth for large assumed increases in the trace gas concentrations; doubling the N(2)O, CH(4), and NH(3) concentrations is found to cause additive increases in the surface temperature of 0.7 degrees , 0.3 degrees , and 0.1 degrees K, respectively. These systematic effects on the earth's radiation budget would have substantial climatic significance. It is therefore important that the abundances of these trace gases be accurately monitored to determine the actual trends of their concentrations.  相似文献   

19.
树种种植前运用PHOENICS软件进行风场分析与模拟分析得出关键点数据与风向,配置不同的简化植物种植方案后再模拟风场,选择最优种植方案并验证优化后的植物种植对于风场微气候的积极影响,再用Ecotect进行热辐射分析优化筛选适宜树种,最后通过合理配置使居住区微气候达到人体舒适度适宜范围并推荐适宜树种。对园林绿地生态种植设计具有参考价值。  相似文献   

20.
针对鱼蟹稻田飞虫捕食装置的离网型户外供能需求的问题,着重研究该装置的供能系统方案。基于户外供能合理性要求,采用小型风力发电机和太阳能电池板自主互补发电来进行能源供应;对小型风力发电机和太阳能电池板分别进行Matlab/Simulink建模,着重对叶轮的风能利用系数、叶尖速比和桨距角的相关性进行量化分析,利用单因素分析法对太阳能电池板进行分析;在桨距角确定的条件下,适当取值叶尖速比,能够获得最大风能利用系数。同时,在不同温度和辐射的条件下,太阳能电池板能够取得功率曲线的峰值,为风光互补的最大功率获取提供理论上的支持。针对离网型风光互补系统能源的合理化利用,提出混合供能的能量管理策略,符合该装置的供能需求,对户外同类型装置供能设计提供一定的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号