首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Active Cavity Radiometer Irradiance Monitor (ACRIM) solar constant measurements from 1980 to 1986 are compared with ground-based, irradiance spectrophotometry of selected Fraunhofer lines. Both data sets were identically sampled and smoothed with an 85-day running mean, and the ACRIM total solar irradiance (S) values were corrected for sunspot blocking (S(c)). The strength of the mid-photospheric manganese 539.4-nanometer line tracks almost perfectly with ACRIM S(e), Other spectral features formed high in the photosphere and chromosphere also track well. These comparisons independently confirm the variability in the ACRIM S(e), signal, indicate that the source of irradiance is faculae, and indicate that ACRIM S(e), follows the 11-year activity cycle.  相似文献   

2.
Plasma wave electric field measurements with the solar orbiting Helios spacecraft have shown that intense (approximately 10 millivolts per meter) electron plasma oscillations occur in association with type III solar radio bursts. These observations confirm the basic mechanism, proposed in 1958, that type III radio emissions are produced by intense electron plasma oscillations excited in the solor corona by electrons ejected from a solar flare.  相似文献   

3.
Venera 8 measurements of solar illumination within the atmnosphere of Venus are quantitatively analyzed by using a multilayer model atmosphere. The analysis shows that there are at least three different scattering layers it the atmosphere of Venus and the total cloud optical thickness is [unknown] 10. However, because of the nature of the observations it is not possible to determine the vertical distributiont of absorbed solar energy, which would reveal the drive for the atmospheric dynamics and the strength of the greenhouse effect. Future spacecraft observations should be designed to (i) measure both upward and downward solar fluxes, (ii) include measurements of the highest clold lavers. and (iii) employ narrow-band and broad-banzd sensors.  相似文献   

4.
A new technique has made it possible to measure the velocity of portions of the solar wind during its flow outward from the sun. This analysis utilizes spacecraft (ISEE-3) observations of radio emission generated in regions of the solar wind associated with solar active regions. By tracking the source of these radio waves over periods of days, it is possible to measure the motion of the emission regions. Evidence of solar wind acceleration during this outward flow, consistent with theoretical models, has also been obtained.  相似文献   

5.
Plasma measurements were obtained with the Galileo spacecraft during an approximately 3.5-hour interval in the vicinity of Venus on 10 February 1990. Several crossings of the bow shock in the local dawn sector were recorded before the spacecraft passed into the solar wind upstream from this planet. Although observations of ions of the solar wind and the postshock magnetosheath plasmas were not possible owing to the presence of a sunshade for thermal protection of the instrument, solar wind densities and bulk speeds were determined from the electron velocity distributions. A magnetic field-aligned distribution of hotter electrons or ;;strahl' was also found in the solar wind. Ions streaming into the solar wind from the bow shock were detected. Electron heating at the bow shock, 相似文献   

6.
Images of an active region on the far side of the sun were derived by applying seismic holography to recent helioseismic observations from space. Active regions are the centers of energetic phenomena such as solar flares and coronal mass ejections, whose resulting electromagnetic and particle radiation interfere with telecommunications and power transmissions on Earth and can pose significant hazards to astronauts and spacecraft. Synoptic seismic imaging of far-side solar activity will now allow anticipation of the appearance of large active regions more than a week ahead of their arrival on the east solar limb.  相似文献   

7.
Data from the Goddard Space Flight Center magnetometers on Voyager 2 have yielded on inbound trajectory observations of multiple crossings of the bow shock and magnetosphere near the Jupiter-sun line at radial distances of 99 to 66 Jupiter radii (RJ) and 72 to 62 RJ, respectively. While outbound at a local hour angle of 0300, these distances increase appreciably so that at the time of writing only the magnetopause has been observed between 160 and 185 RJ. These results and the magnetic field geometry confirm the earlier conclusion from Voyager I studies that Jupiter has an enormous magnetic tail, approximately 300 to 400 RJ in diameter, trailing behind the planet with respect to the supersonic flow of the solar wind. Addi- tional observations of the distortion of the inner magnetosphere by a concentrated plasma show a spatial merging of the equatorial magnetodisk current with the cur- rent sheet in the magnetic tail. The spacecraft passed within 62,000 kilometers of Ganymede (radius = 2,635 kilometers) and observed characteristic fluctuations in- terpreted tentatively as being due to disturbances arising from the interaction of the Jovian magnetosphere with Ganymede.  相似文献   

8.
A simple model based on the changes in excess radiation from bright magnetic faculae and on changes in reduced radiation from dark spots is remarkably successful in matching the slow variations of total solar irradiance measured simultaneously by the ERB and ACRIM satellite radiometers between 1981 and 1984. This model was extended back to 1954 to reconstruct the modulation of irradiance by magnetic activity during the past three 11-year solar cycles. The model predicts that the sun is consistently brighter at activity maximum than at minimum. The 0.07 percent brightening at the peak of the last cycle in 1980 was more pronounced than the brightenings found for either of the two previous cycles, even though cycle 19, which peaked around 1957, had the largest sunspot number amplitude in the history of reliable sunspot records.  相似文献   

9.
The Galileo Extreme Ultraviolet Spectrometer obtained a spectrum of Venus atmospheric emissions in the 55.0- to 125.0-nanometer (nm) wavelength region. Emissions of helium (58.4 nm), ionized atomic oxygen (83.4 nm), and atomic hydrogen (121.6 nm), as well as a blended spectral feature of atomic hydrogen (Lyman-beta) and atomic oxygen (102.5 nm), were observed at 3.5-nm resolution. During the Galileo spacecraft cruise from Venus to Earth, Lyman-alpha emission from solar system atomic hydrogen (121.6 nm) was measured. The dominant source of the Lyman-alpha emission is atomic hydrogen from the interstellar medium. A model of Galileo observations at solar maximum indicates a decrease in the solar Lyman-alpha flux near the solar poles. A strong day-to-day variation also occurs with the 27-day periodicity of the rotation of the sun.  相似文献   

10.
Power is supplied to a planet's magnetosphere from the kinetic energy of planetary spin and the energy flux of the impinging solar wind. A fraction of this power is available to drive numerous observable phenomena, such as polar auroras and planetary radio emissions. In this report our present understanding of these power transfer mechanisms is applied to Uranus to make specific predictions of the detectability of radio and auroral emissions by the planetary radio astronomy (PRA) and ultraviolet spectrometer (UVS) instruments aboard the Voyager spacecraft before its encounter with Uranus at the end of January 1986. The power available for these two phenomena is (among other factors) a function of the magnetic moment of Uranus. The date of earliest detectability also depends on whether the predominant power source for the magnetosphere is planetary spin or solar wind. The magnetic moment of Uranus is derived for each power source as a function of the date of first detection of radio emissions by the PRA instrument or auroral emissions by the UVS instrument. If we accept the interpretation of ultraviolet observations now available from the Earth-orbiting International Ultraviolet Explorer satellite, Uranus has a surface magnetic field of at least 0.6 gauss, and more probably several gauss, making it the largest or second-largest planetary magnetic field in the solar system.  相似文献   

11.
Doppler-shifted hydrogen Lyman-alpha (Lyα) emission from galaxies is currently measured and used in cosmology as an indicator of star formation. Until now, the Milky Way emission has not been detected, owing to far brighter local sources, including the H (hydrogen) glow, i.e., solar Lyα radiation backscattered by interstellar atoms that flow within the solar system. Because observations from the Voyager spacecraft, now leaving the heliosphere, are decreasingly affected by the H glow, the ultraviolet spectrographs are detecting Lyα diffuse emission from our Galaxy. The surface brightness toward nearby star-forming regions is about 3 to 4 rayleighs. The escape fraction of the radiation from the brightest H II regions is on the order of 3% and is highly spatially variable. These results will help in constraining models of Lyα radiation transfer in distant galaxies.  相似文献   

12.
Dunne JA 《Science (New York, N.Y.)》1974,183(4131):1289-1291
The Mariner 10 spacecraft encountered Venus at 1701 G.M.T. on 5 February 1974. The preplanned encounter science sequence was executed satisfactorily, accomplishing all objectives despite a number of spacecraft problems that had occurred in the early phases of the flight. Seven experiments were conducted, including observations of the solar wind interaction region, extreme ultraviolet and infrared emissions, radio occultation, and imaging.  相似文献   

13.
Pioneer 6, which was launched into orbit around the sun on 16 December 1965, was occulted by the sun in the last half of November 1968. During the period in which the spacecraft was occulted by the solar corona, the S-band telemetry carrier underwent Faraday rotation as a result of this anisotropic plasma. The NASA-Jet Propulsion Laboratory 210-foot (64-meter) antenna of the Deep Space Network at Barstow, California, which was equipped with an automatic polarization tracking system, was used to measure this effect. Three large-scale transient phenomena were observed. The measurement of these phenomena indicated that Faraday rotation on the order of 40 degrees occurred. The duration of each phenomenon was approximately 2 hours. These phenomena appear to be correlated with observations of solar radio bursts with wavelengths in the dekametric region.  相似文献   

14.
Initial results of observations of the solar wind interaction with Venus indicate that Venus has a well-defined, strong, standing bow shock wave. Downstream from the shock, an ionosheath is observed in which the compressed and heated postshock plasma evidently interacts directly with the Venus ionosphere. Plasma ion velocity deflections observed within the ionosheath are consistent with flow around the blunt shape of the ionopause. The ionopause boundary is observed and defined by this experiment as the location where the ionosheath ion flow is first excluded. The positions of the bow shock and ionopause are variable and appear to respond to changes in the external solar wind pressure. Near the terminator the bow shock was observed at altitudes of approximately 4600 to approximately 12,000 kilometers. The ionopause altitutde ranged fromn as low as approximately 450 to approximately 1950 kilometers. Within the Venus ionosphere low-energy ions (energy per untit charge < 30 volts) were detected and have been tentatively idtentified as nonflowing ionospheric ions incident from a direction along the spacecraft velocity vector.  相似文献   

15.
Since the Cassini spacecraft reached Saturn's orbit in 2004, its instruments have been sending back a wealth of data on the planet's magnetosphere (the region dominated by the magnetic field of the planet). In this Viewpoint, we discuss some of these results, which are reported in a collection of reports in this issue. The magnetosphere is shown to be highly variable and influenced by the planet's rotation, sources of plasma within the planetary system, and the solar wind. New insights are also gained into the chemical composition of the magnetosphere, with surprising results. These early results from Cassini's first orbit around Saturn bode well for the future as the spacecraft continues to orbit the planet.  相似文献   

16.
Spectrograms of the radio signals from Pioneer 6 were taken as the spacecraft was occulted by the sun. The spectral bandwidths increased slowly at first, then very rapidly at 1 degree from the sun. In addition, six solar "events" produced marked increases of bandwidth lasting for several hours. The received signal power seemed unaffected by the solar corona.  相似文献   

17.
Magnetic reconnection of solar coronal loops is the main process that causes solar flares and possibly coronal heating. In the standard model, magnetic field lines break and reconnect instantaneously at places where the field mapping is discontinuous. However, another mode may operate where the magnetic field mapping is continuous but shows steep gradients: The field lines may slip across each other. Soft x-ray observations of fast bidirectional motions of coronal loops, observed by the Hinode spacecraft, support the existence of this slipping magnetic reconnection regime in the Sun's corona. This basic process should be considered when interpreting reconnection, both on the Sun and in laboratory-based plasma experiments.  相似文献   

18.
The Dawn spacecraft targeted 4 Vesta, believed to be a remnant intact protoplanet from the earliest epoch of solar system formation, based on analyses of howardite-eucrite-diogenite (HED) meteorites that indicate a differentiated parent body. Dawn observations reveal a giant basin at Vesta's south pole, whose excavation was sufficient to produce Vesta-family asteroids (Vestoids) and HED meteorites. The spatially resolved mineralogy of the surface reflects the composition of the HED meteorites, confirming the formation of Vesta's crust by melting of a chondritic parent body. Vesta's mass, volume, and gravitational field are consistent with a core having an average radius of 107 to 113 kilometers, indicating sufficient internal melting to segregate iron. Dawn's results confirm predictions that Vesta differentiated and support its identification as the parent body of the HEDs.  相似文献   

19.
Initial observations by the Pioneer Venus mangnetometer in the sunlit ionosphere reveal a dynamic ionosphere, very responsive to external solar-wind conditions. The localtions of the bow shock and ionosphere are variable. The strength of the magnetic field just olutside the ionopause is in approximate pressure balance with the thermal plasma of the ionosphere and changes markedly from day, to day in response to changes in solar wind pressure. The field strength in the ionosphere is also variable from day to day. The field is often weak, at most a few gammas, but reaching many tens of gammas for periods of the order of seconds. These field enchantments are interpreted as due to the passage of spacecraft through flux ropes consisting of bundles of twisted field lines surrounded by the ionospheric plasma. The helicity of the flux varies through the flux tube, with lows pitch angles on the inside and very lage angles in the low-field outer edges of the ropes. These ropes may have external or internal sources. Consistent with previous results, the average position of the bow shock is much closer to the planet than would be expected if the solar wnd were completely deflected by the planet. In total, these observations indicate that the solar wind plays a significant role in the physics of the Venus ionosphere.  相似文献   

20.
The magnetometer and electron reflectometer investigation (MAG/ER) on the Mars Global Surveyor spacecraft has obtained magnetic field and plasma observations throughout the near-Mars environment, from beyond the influence of Mars to just above the surface (at an altitude of approximately 100 kilometers). The solar wind interaction with Mars is in many ways similar to that at Venus and at an active comet, that is, primarily an ionospheric-atmospheric interaction. No significant planetary magnetic field of global scale has been detected to date (<2 x 10(21) Gauss-cubic centimeter), but here the discovery of multiple magnetic anomalies of small spatial scale in the crust of Mars is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号