首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Demore WB  Yung YL 《Science (New York, N.Y.)》1982,217(4566):1209-1213
Photochemical processes in planetary atmospheres are strongly influenced by catalytic effects of minor constituents. Catalytic cycles in the atmospheres of Earth and Venus are closely related. For example, chlorine oxides (CIOx) act as catalysts in the two atmospheres. On Earth, they serve to convert odd oxygen (atomic oxygen and ozone) to molecular oxygen. On Venus they have a similar effect, but in addition they accelerate the reactions of atomic and molecular oxygen with carbon monoxide. The latter process occurs by a unique combination of CIOx catalysis and sulfur dioxide photosensitization. The mechanism provides an explanation for the very low extent of carbon dioxide decomposition by sunlight in the Venus atmosphere.  相似文献   

2.
Measurements of satellite drag obtained from the orbital decay of the Pioneer Venus orbiter on the nightside of Venus indicate an atomic oxygen atmosphere near 155 kilometers (an order of magnitude less dense than expected) with nighttime inferred exospheric temperatures averaging as low as 110 K. Densities at these altitudes decrease sharply from day to night, contrary to the predicted nighttime oxygen bulge. This decrease may be indicative of an unexpectedly weak transport across the evening terminator or a very strong heat sink at night that is possibly related to vertical eddy heat transport. Large periodic oscillations in density and inferred exospheric temperature are detected with a period of 5 to 6 days. We have subsequently discovered temperature variations of the same period in the stratosphere, which are tentatively interpreted as planetary-scale waves that may propagate upward producing the periodic variations in the thermosphere and exosphere. The peak-to-peak amplitude of the temperature oscillations associated with these waves apparently increases with altitude approximately as follows: 1 K (70 kilometers), 3 K (90 kilometers), 40 K (155 kilometers). Inferred nighttime exospheric temperatures are found to be asymmetric relative to midnight, minimizing on the morning side. The possibility of superrotation of the thermosphere, and exosphere is discussed.  相似文献   

3.
Measurements in situ of the neutral composition and temperature of the thermosphere of Venus are being made with a quadrupole mass spectrometer on the Pioneer Venus orbiter. The presence of many gases, incluiding the major constituents CO(2), CO, N(2), O, and He has been confirmed. Carbon dioxide is the most abundant constituent at altitudes below about 155 kilometers in the terminator region. Above this altitude atomic oxygen is the major constituent, with O/CO(2) ratios in the upper atmosphere being greater than was commonly expected. Isotope ratios of O and C are close to terrestrial values. The temperature inferred from scale heights above 180 kilometers is about 400 K on the dayside near the evening terminator at a solar zenith angle of about 69 degrees . It decreases to about 230 K when the solar zenith angle is about 90 degrees .  相似文献   

4.
Pioneer Venus in situ measurements made with the retarding potential analyzer reveal strong variations in the nightside ionospheric plasma density from location to location in some orbits and from orbit to orbit. The ionopause is evident at night as a relatively abrupt decrease in the thermal plasma concentration from a few hundred to ten or fewer ions per cubic centimeter. The nightside ion and electron temperatures above an altitude of 250 kilometers, within the ionosphere and away from the terminator, are comparable in magnitude and have a value at the ionopause of approximately 8000 K. The electron temperature increases from a few tens of thousands of degrees Kelvin just outside the ionopause to several hundreds of thoussands of degrees Kelvin further into the shocked solar wind. The coldest ion temperatures measured at an altitude of about 145 kilometers are 140 to 150 K and are still evidently above the neutral temperature. Preliminary day-and nightside model ion and electron temperature height profiles are compared with measured profiles. To raise the model ion temperature to the measured ion temperature on both day-and nightsides, it was necessary to include an ion energy source of the order of 4 x 10(-3) erg per square centimeter per second, presumably Joule heating. The heat flux through the electron gas from the solar wind into the neutral atmosphere averaged over day and night may be as large as 0.05 erg per square centimeter per second. Integrated over the planet surface, this heat flux represents one-tenth of the solar wind energy expended in drag on the sunward ionopause hemisphere.  相似文献   

5.
Green line emission at 557.7 nanometers arising from the O(1S - 1D) transition of atomic oxygen has been observed on the nightside of Venus with HIRES, the echelle spectrograph on the W. M. Keck I 10-meter telescope. We also observe optical emissions of molecular oxygen, consistent with the spectra from the Venera orbiters, but our green line intensity is so high that we cannot explain how it could be inconspicuous in the Venera spectra. An upper limit for the intensity of the O(1D - 3P) oxygen red line at 630 nanometers has also been obtained. The large green/red ratio indicates that the source is not associated with the Venus ionosphere. An important conclusion is that observation of the green line in a planetary atmosphere is not an indicator of an atmosphere rich in molecular oxygen.  相似文献   

6.
Neutral mass spectrometers carried on the aeroshells of Viking 1 and Viking 2 indicate that carbon dioxide is the major constituent of the martian atmosphere over the height range 120 to 200 kilometers. The atmosphere contains detectable concentrations of nitrogen, argon, carbon monoxide, molecular oxygen, atomic oxygen, and nitric oxide. The upper atmosphere exhibits a complex and variable thermal structure and is well mixed to heights in excess of 120 kilometers.  相似文献   

7.
The neutral mass spectrometer on board the Pioneer Venus multiprobe bus measured composition and structral parameters of the dayside Venus upper atmosphere on 9 December 1978. Carbon dioxide and helium number densities were 6 x 10(6) and 5 x 10(6) per cubic centimeter, respectively, at an altitude of 150 kilometers. The mixing ratios of both argon-36 and argon-40 were approximately 80 parts per million at an altitude of 135 kilometers. The exospheric temperature from 160 to 170 kilometers was 285 +/- 10 K. The helium homopause was found at an altitude of about 137 kilometers.  相似文献   

8.
The first gas chromatographic analysis of the lower atmosphere of Venus is reported. Three atmospheric samples were analyzed. The third of these samples showed carbon dioxide (96.4 percent), molecular nitrogen (3.41 percent), water vapor (0.135 percent), molecular oxygen [69.3 parts per million (ppm)], argon (18.6 ppm), neon (4.31 ppm), and sulfuir dioxide (186 ppm). The amounts of water vapor and sulfur dioxide detected are roughly compatible with the requirements of greenhouse models of the high surface temperature of Venus. The large positive gradient of sulfur dioxide, molecular oxygen, and water vapor from the clould tops to their bottoms, as implied by Earth-based observations and these resuilts, gives added support for the presence of major quantities of aqueous sulfuric acid in the clouds. A comparison of the inventory of inert gases found in the atmospheres of Venus, Earth, and Mars suggests that these components are due to outgassing from the planetary interiors.  相似文献   

9.
The first in situ measurements of the composition of the ionosphere of Venus are provided by independent Bennett radio-frequency ion mass spectrometers on the Pioneer Venus bits and orbiter spacecraft, exploring the dawn and duskside regions, respectively. An extensive composition of ion species, rich in oxygen, nitrogen, and carbon chemistry is idenitified. The dominant topside ion is O(+), with C(+), N(+), H(+), and He(+) as prominent secondary ions. In the lower ionosphere, the ionzization peak or F(1) layer near 150 kilometers reaches a concentration of about 5 x l0(3) ions per cubic centimeter, and is composed of the dominant molecular ion, O(2)(+), with NO(+), CO(+), and CO(2)(+), constituting less than 10 percent of the total. Below the O(+) peak near 200 kilometers, the ions exhibit scale heights consistent with a neutral gas temperature of about 180 K near the terminator. In the upper ionosphere, scale heights of all species reflect the effects of plasma transport, which lifts the composition upward to the often abrupt ionopause, or thermal ion boundary, which is observed to vary in height between 250 to 1800 kilometers, in response to solar wind dynamics.  相似文献   

10.
Pioneer Venus orbiter dual-frequency radio occultation measurements have produced many electron density profiles of the nightside ionosphere of Venus. Thirty-six of these profiles, measured at solar zenith angles (chi) from 90.60 degrees to 163.5 degrees , are discussed here. In the "deep" nightside ionosphere (chi > 110 degrees ), the structure and magnitude of the ionization peak are highly variable; the mean peak electron density is 16,700 +/- 7,200 (standard deviation) per cubic centimeter. In contrast, the altitude of the peak remains fairly constant with a mean of 142.2 +/- 4.1 kilometers, virtually identical to the altitude of the main peak of the dayside terminator ionosphere. The variations in the peak ionization are not directly related to contemporal variations in the solar wind speed. It is shown that electron density distributions similar to those observed in both magnitude and structure can be produced by the precipitation on the nightside of Venus of electron fluxes of about 108 per square centimeter per second with energies less than 100 electron volts. This mechanism could very likely be responsible for the maintenance of the persistent nightside ionosphere of Venus, although transport processes may also be important.  相似文献   

11.
An objective grating spectrometer on Mariner 10 has measured air-glow in the wavelength range 200 to 1700 angstroms. The data reveal the presence of significant concentrations of hydrogen, helium, carbon, and oxygen atoms in the upper atmosphere of Venus. A preliminary analysis of the hydrogen data indicates an exospheric temperature of 400 degrees K. There is evidence for intense air-glow emission at wavelengths longward of 1350 angstroms; the nature of this emission is unclear, but the radiation is spatially extensive and detectable on both day and night sides of the planet.  相似文献   

12.
A latitudinal circulation model of solar wind flow in the near wake of Venus is presented. It is shown that solar wind fluxes entering through the polar terminator can be viscously forced to lower latitudes. The resulting motion produces a downstream elongation of the nightside polar ionosphere out to the downstream extension of the middle- and low-latitude ionopause. The geometry suggested by this flow circulation model provides a simple explanation of the ionospheric bulge inferred from the Pioneer Venus observations.  相似文献   

13.
Observations of Comet Kohoutek (1973f) in the spectral region between 1200 and 3200 angstroms were made from an Aerobee rocket on 5.1 January 1974 universal time. The strongest features observed were the Lyman alpha line of neutral atomic hydrogen at 1216 angstroms and the hydroxyl (OH) bands at 3090 and 3142 angstroms. Atomic oxygen and atomic carbon were also detected, and their luminosity implies a production rate (of carbon monoxide or carbon dioxide) commensurate with that of water vapor.  相似文献   

14.
The Galileo Extreme Ultraviolet Spectrometer obtained a spectrum of Venus atmospheric emissions in the 55.0- to 125.0-nanometer (nm) wavelength region. Emissions of helium (58.4 nm), ionized atomic oxygen (83.4 nm), and atomic hydrogen (121.6 nm), as well as a blended spectral feature of atomic hydrogen (Lyman-beta) and atomic oxygen (102.5 nm), were observed at 3.5-nm resolution. During the Galileo spacecraft cruise from Venus to Earth, Lyman-alpha emission from solar system atomic hydrogen (121.6 nm) was measured. The dominant source of the Lyman-alpha emission is atomic hydrogen from the interstellar medium. A model of Galileo observations at solar maximum indicates a decrease in the solar Lyman-alpha flux near the solar poles. A strong day-to-day variation also occurs with the 27-day periodicity of the rotation of the sun.  相似文献   

15.
Emission features from ionized carbon dioxide and carbon monoxide were measured in the 1900- to 4300-angstrom spectral region. The Lyman alpha 1216-angstrom line of atomic hydrogen and the 1304-, 1356-, and 2972-angstrom lines of atomic oxygen were observed.  相似文献   

16.
Misidentification of two peaks from the Pioneer Venus sounder probe gas chromatograph (SPGC), also formerly known as the LGC, gave rise to quantitative errors in the abundances of oxygen, argon, and carbon monoxide. The argon abundance is estimated at 67 parts per million and that of carbon monoxide at 20 parts per million. At this time, no estimates for the oxygen abundance can be made.  相似文献   

17.
Measurements of the changes in orbital period of the Pioneer Venus orbiter have yielded estimates of the density of the upper atmosphere of Venus at altitudes in the range from 150 to 200 kilometers. At the lower limit of this range, the density on the dayside of the terminator exhibits a temporal variation of amplitude near 4 x 10(-14) gram per cubic centimeter aboult a mean of approximately 1.4 x 10(-13) gram per cubic centimeter. The variation appears oscillatory, with a 4- to 5-day period, but barely one cycle was observed. The density on the nightside of the terminator, sampled inthe same 150-kilometer altitude range, fluctuates about a smaller mean of approximately 4 x 10(-14) gram per cubic centimeter. The density between the altitudes of 150 and 200 kilometers, sampled only on the dayside of the terminator, imply a scale height of between 15 and 20 kilometers. The interpretation of this estimate is uncertain, however, in view of the measurements at the different altitudes having been made at different times and, hence, at different values of solar phase.  相似文献   

18.
Empirical models of the electron temperature and electron density of the late afternoon and nightside Venus ionosphere have been derived from Pioneer Venus measurements acquired between 10 December 1978 and 23 March 1979. The models describe the average ionosphere conditions near 18 degrees N latitude between 150 and 700 kilometers altitude for solar zenith angles of 80 degrees to 180 degrees . The average index of solar flux was 200. A major feature of the density model is the factor of 10 decrease beyond 90 degrees followed by a very gradual decrease between 120 degrees and 180 degrees . The density at 150 degrees is about five times greater than observed by Venera 9 and 10 at solar minimum (solar flux approximately 80), a difference that is probably related to the effects of increased solar activity on the processes that maintain the nightside ionosphere. The nightside electron density profile from the model (above 150 kilometers) can be reproduced theoretically either by transport of 0(+) ions from the dayside or by precipitation of low-energy electrons. The ion transport process would require a horizontal flow velocity of about 300 meters per second, a value that is consistent with other Pioneer Venus observations. Although currently available energetic electron data do not yet permit the role of precipitation to be evaluated quantitatively, this process is clearly involved to some extent in the formation of the nightside ionosphere. Perhaps the most surprising feature of the temperature model is that the electron temperature remains high throughout the nightside ionosphere. These high nocturnal temperatures and the existence of a well-defined nightside ionopause suggest that energetic processes occur across the top of the entire nightside ionosphere, maintaining elevated temperatures. A heat flux of 2 x 10(10) electron volts per square centimeter per second, introduced at the ionopause, is consistent with the average electron temperature profile on the nightside at a solar zenith angle of 140 degrees .  相似文献   

19.
Bellamy N  Risk MJ 《Science (New York, N.Y.)》1982,215(4540):1618-1619
Large volumes of a gas consisting of 69 percent molecular oxygen and 31 percent molecular nitrogen with trace amounts of carbon monoxide, carbon dioxide, and methane have been found trapped inside skeletons of the common hydrozoan Millepora. Volumes were low in the morning and reached a maximum by late afternoon. The oxygen was probably produced by the endolithic (boring) algae, with which the Millepora skeletons are very heavily infested. Oxygen production by endolithic algae in Millepora and in other substrates could influence estimates of reef productivity based on measurements of dissolved gases.  相似文献   

20.
Densities for carbon dioxide measured by the upper atmospheric mass spectrometers on Viking 1 and Viking 2 are analyzed to yield height profiles for the temperature of the martian atmosphere between 120 and 200 kilometers. Densities for nitrogen and argon are used to derive vertical profiles for the eddy diffusion coefficient over the same height range. The upper atmosphere of Mars is surprisingly cold with average temperatures for both Viking 1 and Viking 2 of less than 200 degrees K, and there is significant vertical structure. Model calculations are presented and shown to be in good agreement with measured concentrations of carbon monoxide, oxygen, and nitric oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号