首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The MW (moment magnitude) 7.9 Denali fault earthquake on 3 November 2002 was associated with 340 kilometers of surface rupture and was the largest strike-slip earthquake in North America in almost 150 years. It illuminates earthquake mechanics and hazards of large strike-slip faults. It began with thrusting on the previously unrecognized Susitna Glacier fault, continued with right-slip on the Denali fault, then took a right step and continued with right-slip on the Totschunda fault. There is good correlation between geologically observed and geophysically inferred moment release. The earthquake produced unusually strong distal effects in the rupture propagation direction, including triggered seismicity.  相似文献   

2.
We use Global Positioning System (GPS) observations and elastic half-space models to estimate the distribution of coseismic and postseismic slip along the Izmit earthquake rupture. Our results indicate that large coseismic slip (reaching 5.7 meters) is confined to the upper 10 kilometers of the crust, correlates with structurally distinct fault segments, and is relatively low near the hypocenter. Continued surface deformation during the first 75 days after the earthquake indicates an aseismic fault slip of as much as 0.43 meters on and below the coseismic rupture. These observations are consistent with a transition from unstable (episodic large earthquakes) to stable (fault creep) sliding at the base of the seismogenic zone.  相似文献   

3.
Faults in complex tectonic environments interact in various ways, including triggered rupture of one fault by another, that may increase seismic hazard in the surrounding region. We model static and dynamic fault interactions between the strike-slip and thrust fault systems in southern California. We find that rupture of the Sierra Madre-Cucamonga thrust fault system is unlikely to trigger rupture of the San Andreas or San Jacinto strike-slip faults. However, a large northern San Jacinto fault earthquake could trigger a cascading rupture of the Sierra Madre-Cucamonga system, potentially causing a moment magnitude 7.5 to 7.8 earthquake on the edge of the Los Angeles metropolitan region.  相似文献   

4.
The Morgan Hill, California, earthquake (magnitude 6.1) of 24 April 1984 ruptured a 30-kilometer-long segment of the Calaveras fault zone to the east of San Jose. Although it was recognized in 1980 that an earthquake of magnitude 6 occurred on this segment in 1911 and that a repeat of this event might reasonably be expected, no short-term precursors were noted and so the time of the 1984 earthquake was not predicted. Unilateral rupture propagation toward the south-southeast and an energetic late source of seismic radiation located near the southeast end of the rupture zone contributed to the highly focused pattern of strong motion, including an exceptionally large horizontal acceleration of 1.29g at a site on a dam abutment near the southeast end of the rupture zone.  相似文献   

5.
Segall P  Harris R 《Science (New York, N.Y.)》1986,233(4771):1409-1413
A network of geodetic lines spanning the San Andreas fault near the rupture zone of the 1966 Parkfield, California, earthquake (magnitude M = 6) has been repeatedly surveyed since 1959. In the study reported here the average rates of line-length change since 1966 were inverted to determine the distribution of interseismic slip rate on the fault. These results indicate that the Parkfield rupture surface has not slipped significantly since 1966. Comparison of the geodetically determined seismic moment of the 1966 earthquake with the interseismic slip-deficit rate suggests that the strain released by the latest shock will most likely be restored between 1984 and 1989, although this may not occur until 1995. These results lend independent support to the earlier forecast of an M = 6 earthquake near Parkfield within 5 years of 1988.  相似文献   

6.
Observations and modeling of 3- to 6-hertz seismic shear waves trapped within the fault zone of the 1992 Landers earthquake series allow the fine structure and continuity of the zone to be evaluated. The fault, to a depth of at least 12 kilometers, is marked by a zone 100 to 200 meters wide where shear velocity is reduced by 30 to 50 percent. This zone forms a seismic waveguide that extends along the southern 30 kilometers of the Landers rupture surface and ends at the fault bend about 18 kilometers north of the main shock epicenter. Another fault plane waveguide, disconnected from the first, exists along the northern rupture surface. These observations, in conjunction with surface slip, detailed seismicity patterns, and the progression of rupture along the fault, suggest that several simple rupture planes were involved in the Landers earthquake and that the inferred rupture front hesitated or slowed at the location where the rupture jumped from one to the next plane. Reduction in rupture velocity can tentatively be attributed to fault plane complexity, and variations in moment release can be attributed to variations in available energy.  相似文献   

7.
Recent studies show that earthquake faults may rupture at speeds exceeding the shear wave velocity of rocks. This supershear rupture produces in the ground a seismic shock wave similar to the sonic boom produced by a supersonic airplane. This shock wave may increase the destruction caused by the earthquake. We report that supershear earthquakes are characterized by a specific pattern of aftershocks: The fault plane itself is remarkably quiet whereas aftershocks cluster off the fault, on secondary structures that are activated by the supershear rupture. The post-earthquake quiescence of the fault shows that friction is relatively uniform over supershear segments, whereas the activation of off-fault structures is explained by the shock wave radiation, which produces high stresses over a wide zone surrounding the fault.  相似文献   

8.
Lin A  Fu B  Guo J  Zeng Q  Dang G  He W  Zhao Y 《Science (New York, N.Y.)》2002,296(5575):2015-2017
Field investigations show that the surface wave magnitude (Ms) 8.1 Central Kunlun earthquake (Tibetan plateau) of 14 November 2001 produced a nearly 400-kilometer-long surface rupture zone, with as much as 16.3 meters of left-lateral strike-slip along the active Kunlun fault in northern Tibet. The rupture length and maximum displacement are the largest among the co-seismic surface rupture zones reported on so far. The strike-slip motion and the large rupture length generated by the earthquake indicate that the Kunlun fault partitions its deformation into an eastward extrusion of Tibet to accommodate the continuing penetration of the Indian plate into the Eurasian plate.  相似文献   

9.
The 2001 Kunlunshan earthquake was an extraordinary event that produced a 400-km-long surface rupture. Regional broadband recordings of this event provide an opportunity to accurately observe the speed at which a fault ruptures during an earthquake, which has important implications for seismic risk and for understanding earthquake physics. We determined that rupture propagated on the 400-km-long fault at an average speed of 3.7 to 3.9 km/s, which exceeds the shear velocity of the brittle part of the crust. Rupture started at sub-Rayleigh wave velocity and became supershear, probably approaching 5 km/s, after about 100 km of propagation.  相似文献   

10.
Earthquake potential along the northern hayward fault, california   总被引:1,自引:0,他引:1  
The Hayward fault slips in large earthquakes and by aseismic creep observed along its surface trace. Dislocation models of the surface deformation adjacent to the Hayward fault measured with the global positioning system and interferometric synthetic aperture radar favor creep at approximately 7 millimeters per year to the bottom of the seismogenic zone along a approximately 20-kilometer-long northern fault segment. Microearthquakes with the same waveform repeatedly occur at 4- to 10-kilometer depths and indicate deep creep at 5 to 7 millimeters per year. The difference between current creep rates and the long-term slip rate of approximately 10 millimeters per year can be reconciled in a mechanical model of a freely slipping northern Hayward fault adjacent to the locked 1868 earthquake rupture, which broke the southern 40 to 50 kilometers of the fault. The potential for a major independent earthquake of the northern Hayward fault might be less than previously thought.  相似文献   

11.
The Landers earthquake, which had a moment magnitude (M(w)) of 7.3, was the largest earthquake to strike the contiguous United States in 40 years. This earthquake resulted from the rupture of five major and many minor right-lateral faults near the southern end of the eastern California shear zone, just north of the San Andreas fault. Its M(w) 6.1 preshock and M(w) 6.2 aftershock had their own aftershocks and foreshocks. Surficial geological observations are consistent with local and far-field seismologic observations of the earthquake. Large surficial offsets (as great as 6 meters) and a relatively short rupture length (85 kilometers) are consistent with seismological calculations of a high stress drop (200 bars), which is in turn consistent with an apparently long recurrence interval for these faults.  相似文献   

12.
The first major earthquake on the San Andreas fault since 1906 fulfilled a long-term forecast for its rupture in the southern Santa Cruz Mountains. Severe damage occurred at distances of up to 100 kilometers from the epicenter in areas underlain by ground known to be hazardous in strong earthquakes. Stronger earthquakes will someday strike closer to urban centers in the United States, most of which also contain hazardous ground. The Loma Prieta earthquake demonstrated that meaningful predictions can be made of potential damage patterns and that, at least in well-studied areas, long-term forecasts can be made of future earthquake locations and magnitudes. Such forecasts can serve as a basis for action to reduce the threat major earthquakes pose to the United States.  相似文献   

13.
We showed that the rupture produced by the great Peru earthquake (moment magnitude 8.4) on 23 June 2001 propagated for approximately 70 kilometers before encountering a 6000-square-kilometer area of fault that acted as a barrier. The rupture continued around this barrier, which remained unbroken for approximately 30 seconds and then began to break when the main rupture front was approximately 200 kilometers from the epicenter. The barrier had relatively low rupture speed, slip, and aftershock density as compared to its surroundings, and the time of the main energy release in the earthquake coincided with the barrier's rupture. We associate this barrier with a fracture zone feature on the subducting oceanic plate.  相似文献   

14.
The 2 May 1983 Coalinga, California, earthquake (magnitude 6.5) failed to rupture through surface deposits and, instead, elastically folded the top few kilometers of the crust. The subsurface rate of fault slip and the earthquake repeat time are estimated from seismic, geodetic, and geologic data. Three larger earthquakes (up to magnitude 7.5) during the past 20 years are also shown to have struck on reverse faults concealed beneath active folds.  相似文献   

15.
Ide S  Baltay A  Beroza GC 《Science (New York, N.Y.)》2011,332(6036):1426-1429
Strong spatial variation of rupture characteristics in the moment magnitude (M(w)) 9.0 Tohoku-Oki megathrust earthquake controlled both the strength of shaking and the size of the tsunami that followed. Finite-source imaging reveals that the rupture consisted of a small initial phase, deep rupture for up to 40 seconds, extensive shallow rupture at 60 to 70 seconds, and continuing deep rupture lasting more than 100 seconds. A combination of a shallow dipping fault and a compliant hanging wall may have enabled large shallow slip near the trench. Normal faulting aftershocks in the area of high slip suggest dynamic overshoot on the fault. Despite prodigious total slip, shallower parts of the rupture weakly radiated at high frequencies, whereas deeper parts of the rupture radiated strongly at high frequencies.  相似文献   

16.
Old trees growing along the San Andreas fault near Wrightwood, California, record in their annual ring-width patterns the effects of a major earthquake in the fall or winter of 1812 to 1813. Paleoseismic data and historical information indicate that this event was the "San Juan Capistrano" earthquake of 8 December 1812, with a magnitude of 7.5. The discovery that at least 12 kilometers of the Mojave segment of the San Andreas fault ruptured in 1812, only 44 years before the great January 1857 rupture, demonstrates that intervals between large earthquakes on this part of the fault are highly variable. This variability increases the uncertainty of forecasting destructive earthquakes on the basis of past behavior and accentuates the need for a more fundamental knowledge of San Andreas fault dynamics.  相似文献   

17.
活动断层所产生的急剧错动性的地面运动,会导致如断层位移、滑坡和地陷等,对埋地管道系统造成严重的影响。研究表明,地震已严重破坏了埋地的油、气、水和污水管道,其后果表现为管道的断裂与严重扭曲。由于地震活动的危害,国内外目前对穿过活动断层区埋地管道的设计均十分重视。分别从埋地管道震害原因、埋地管道通过平推断层的当前的研究以及通过逆冲断层区的研究现状等方面,综述了埋地管道通过活动断层区的研究情况,提出了埋地管道通过逆冲断层区存在的主要问题。  相似文献   

18.
Models predict that dynamic shear ruptures during earthquake faulting occur as either sliding cracks, where a large section of the interface slides behind a fast-moving rupture front, or self-healing slip pulses, where the fault relocks shortly behind the rupture front. We report experimental visualizations of crack-like, pulse-like, and mixed rupture modes propagating along frictionally held, "incoherent" interfaces separating identical solids, and we describe the conditions under which those modes develop. A combination of simultaneously performed measurements via dynamic photoelasticity and laser interferometry reveals the rupture mode type, the exact point of rupture initiation, the sliding velocity history, and the rupture propagation speed.  相似文献   

19.
The 1989 Loma Prieta, California, earthquake perturbed the static stress field over a large area of central California. The pattern of stress changes on major faults in the region predicted by models of the earthquake's dislocation agrees closely with changes in the regional seismicity rate after the earthquake. The agreement is best for models with low values of the coefficient of friction (0.1 相似文献   

20.
Seismological observations of the 2012 moment magnitude 8.6 Sumatra earthquake reveal unprecedented complexity of dynamic rupture. The surprisingly large magnitude results from the combination of deep extent, high stress drop, and rupture of multiple faults. Back-projection source imaging indicates that the rupture occurred on distinct planes in an orthogonal conjugate fault system, with relatively slow rupture speed. The east-southeast-west-northwest ruptures add a new dimension to the seismotectonics of the Wharton Basin, which was previously thought to be controlled by north-south strike-slip faulting. The rupture turned twice into the compressive quadrant, against the preferred branching direction predicted by dynamic Coulomb stress calculations. Orthogonal faulting and compressional branching indicate that rupture was controlled by a pressure-insensitive strength of the deep oceanic lithosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号