首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fiberboards were prepared from acetylated fibers with various weight gains: 0, 4.7, 9.4, 18.5, and 24.8 weight percent gain (WPG). The effects of low bondability of acetylated fibers on mechanical properties and dimensional changes were determined. The decreased mechanical properties of acetylated fiberboard are mainly due to low bondability. To improve bending strength, high face density is also needed. The thickness swelling according to JIS and the linear expansion under relative humidity changes decreased with increasing WPG. As for accelerated weathering and the outdoor exposure test, the thickness changes in 4.7–18.5 WPG boards were much higher than those in OWPG board and 24.8 WPG board. The high thickness change in 4.7–18.5 WPG boards is due to low bondability. Although 24.8 WPG board also has low bondability, the thickness change of 24.8 WPG board decreased. The high dimensional stability of acetylated fibers, caused by high WPG, probably outweighs the dimensional change caused by low bondability. On the other hand, during the boiling test the thickness changes in 24.8 WPG board and the 4.7–18.5 WPG boards were higher than those in 0 WPG board. The effect of the boiling test on the boards is more severe than that seen with the accelerated weathering and outdoor exposure test; therefore, the effects of the low bondability probably cancel the effects of the high WPG. It is necessary to increase the bondability of acetylated fibers to improve the dimensional stability and the mechanical properties.  相似文献   

2.
Binderless boards were prepared from steam-exploded fiber of oil palm(Elaeis guineensis Jacq.) frond at six levels of explosion conditions. Their properties were investigated and evaluated. The mechanical properties (i.e., modulus of rupture, modulus of elasticity, and internal bonding strength) of the boards increased linearly with increasing board density as the usual hardboard. The boards made from fibers treated under a steam explosion condition of 25 kgf/cm2 (steam pressure) and 5 min (digestion period) exhibited the maximum strength. These boards at a density of 1.2 g/cm3 met the requirement of S-20 grade of JIS A 5905 — 1994 (fiberboard). Thickness swelling of the boards ranged from 6% to 14% under the JIS A 5908 — 1994 (particleboard) test condition and showed no significant changes with increasing board density. The main bonding strength of the board is believed to be due to a ligninfurfural linkage. Considering the chemical components of oil palm frond, which is rich in hemicellulose, there seems to be a good possibility for producing binderless boards using steam-exploded fibers of oil palm frond.This study was presented in part at the 2nd International Wood Science Seminar, Serpong, Indonesia, November 1998  相似文献   

3.
Two main types of fiberboards were produced using lauan (Shorea spp.) fibers with an isocyanate resin as the binder; fiberboard with a flat, homogeneous (homoprofile), and typical U-shaped (conventional) density profile along the board thickness. The processing parameters included manipulation of mat moisture content distribution, press closing speed, and hot pressing method. The results are summarized as follows: (1) A larger variation was observed in the peak density (PD) and core density (CD) of fiberboards at 0.5g/cm3 mean density (MD) level than in those at 0.7 g/cm3. Generally, PD showed a greater variation than CD, irrespective of MD level. (2) Boards produced using two-step hot pressing recorded substantially higher PD with reduced CD. (3) Multiple regression analysis showed that CD and PD could be calculated based on the other profile defining factors, and a rough estimation for peak distance and gradient factor was possible. (4) Based on static bending, conventional fiberboard had a higher modulus of rupture (MOR) than the homo-profile board but a similar modulus of elasticity (MOE). (5) At 0.5 g/cm3 the MOR and dynamic MOE of fiberboard increased by up to 67% and 62%, respectively, when the PD increased from 0.5 to 1.07 g/cm3. Similarly, an increase of PD from 0.7 to 1.1 g/cm3 resulted in corresponding increases of 55% and 34% in the MOR and dynamic MOE of 0.7 g/cm3 boards. (6) The internal bond strength and screw withdrawal resistance were almost entirely dependent on the CD and MD, respectively. (7) Homo-profile fiberboards registered higher thickness swelling and water absorption than conventional fiberboards throughout the dry/wet conditioning cycle.  相似文献   

4.
This work investigated some mechanical, physical and free formaldehyde emission properties of heat-treated MDF. For this purpose, MDF panels were subjected to varying heat treatment temperatures (155°C, 165°C and 175°C), durations (2.5?h., 3.5?h. and 4.5?h.) and waiting times after hot pressing (30?min., 120?min. and 600?min). Thickness swelling (TS), water absorption (WA), free formaldehyde emission (FFE), bending strength (BS), modulus of elasticity (MOE), tensile strength perpendicular to fibers (TSPF) for treated and untreated samples were tested and evaluated statistically. Consequently, after the heat treatment values of tensile strength, bending strength and modulus of elasticity were almost negatively affected relatively, but the thickness swelling and water absorption and quantities of free formaldehyde were improved positively of MDF samples.  相似文献   

5.
This study was carried out to elucidate the effect of defibration temperature in the range 171–202°C on the properties of 12-mm thick MDF boards made without synthetic resins from softwood fibers activated by laccase treatment for the generation of phenoxy radicals on the fiber surfaces. Laccase treatment generated radicals in the fibers. An increase in defibration temperature improved the reactivity of fibers during laccase-catalyzed oxidation. The number of radicals detected in the fibers after laccase treatment in water suspension and the fiber oxygen consumption during the treatments increased with an increase in defibration temperature, while a concurrent improvement was observed in the mechanical strength and thickness swell of dry-process MDF boards made from fibers refined at different temperatures and treated with laccase in the refiner blowline. The different fiber reactivities or board properties were not due to a presence of different amounts of lignin remaining on the fiber surfaces after acetone extraction. The probable reason for them was the fact that the amount of low-molecular weight lignin, a reactive substrate for laccase, increases with increasing defibration temperature. The adhesion occurring during pressing is thus likely to involve coupling or other reactions of radicals located on adjacent fibers, whereby interfiber covalent bonds are formed.  相似文献   

6.
To clarify the role of lignin in the affinities of acetylated wood for organic solvents, the effects of delignification on the solvent adsorption of acetylated wood were investigated. Acetylated wood meals rapidly adsorbed organic solvents that were hardly adsorbed by unmodified wood. For nonpolar and low-polarity organic solvents, a clear positive correlation was observed between the amount of adsorption and the lignin content. This indicated that acetylated lignin was responsible for the excellent affinities of acetylated wood for hydrophobic organic solvents. On the other hand, for lower alcohols and water, the amount of adsorption reduced with an increase in the lignin content. It was suggested that the adsorption of such polar solvents was dominated by insufficiently acetylated hydrophilic polysaccharides.  相似文献   

7.
Abstract

One of the major issues in a long-term perspective for the use of wood–plastic composites (WPCs) in outdoor applications is the moisture sensitivity of the wood component and the consequent dimensional instability and susceptibility to biological degradation of the composite. In this work, the effects of using an acetylated wood component and a cellulose ester as matrix on the micromorphology, mechanical performance and moisture uptake of injection-moulded WPCs have been studied. Composites based on unmodified and acetylated wood particles, specially designed with a length-to-width ratio of about 5–7, combined with both cellulose acetate propionate (CAP) and polypropylene (PP) matrices were studied. The size and shape of the wood particles were studied before and after the processing using light microscopy, and the micromorphology of the composites was studied using a newly developed surface preparation technique based on ultraviolet laser irradiation combined with low-vacuum scanning electron microscopy (LV-SEM). The water vapour sorption in the composites and the effect of accelerated weathering were measured using thin samples which were allowed to reach equilibrium moisture content (EMC). The length-to-diameter ratio was only slightly decreased for the acetylated particles after compounding and injection moulding, although both the unmodified and the acetylated particles were smaller in size after the processing steps. The tensile strength was about 40% higher for the composite based on acetylated wood than for the composite with unmodified wood using either CAP or PP as matrix, whereas the notched impact strength of the composite based on acetylated wood was about 20% lower than those of the corresponding unmodified composites. The sorption experiments showed that the EMC was 50% lower in the composites with an acetylated wood component than in the composites with an unmodified wood component. The choice of matrix material strongly affected the moisture absorptivity of the WPC. The composites with CAP as matrix gained moisture more rapidly than the composites with PP as matrix. It was also found that accelerated ageing in a Weather-Ometer® significantly increased the moisture sensitivity of the PP-based composites.  相似文献   

8.
White rot fungi were optimized to cultivate highly active laccase. The characteristics of laccase incubated by continuous culture were compared with those of direct culture. The enzyme activity of laccase incubated by continuous culture technology reached a higher value on the fifth day of the growth. The optimization incubation time of high activity laccase was the eleventh day. A large amount of highly active laccase can be obtained in a relatively short time by continuous culture to replace traditional laccase. After laccase treatment, the lignin composition of wood fibers were oxidation-catalyzed by laccase. The number of chemical-bonding points between the wood fibers was increased. The wood fibers treated by laccase were fabricated into boards and their mechanical properties improved with the laccase-incubation times.Compared with the fiberboards made from fibers that were pre-treated by laccase of incubation 5 days, the static bending strength of those that were pre-treated by laccase of incubation 11 days was increased by 18.95%, the elastic modulus was increased by 35.49%, and the internal bond strength was increased by 44.11%.  相似文献   

9.
The dependence of the reaction parameters of acetylation on the reaction mixture was compared among uncatalyzed, acetic anhydride-xylene mixed, and acetic anhydride-pyridine mixed solutions. Wood meal and blocks were used to examine the effect of sample size. A first-order rate equation was applied to the data, and a rate constant and leveling off value of weight gain (WG) were estimated. The rate-determining step was examined from the viewpoint of activation energy. The results were as follows: (1) Regarding the magnitude of the rate constant, the order was pyridine system > uncatalyzed system > xylene system. (2) The ultimate value of WG was lower in the uncatalyzed and xylene systems than the pyridine system, probably because of the swelling ability of pyridine. (3) The activation energies of acetylation estimated for wood meal were 120, 135, and 110kJ/mol for the uncatalyzed, xylene, and pyridine systems, respectively. (4) The characteristics of the diffusion-controlled reaction became marked when the acetylation was carried out in the pyridine system, at elevated temperature, and for wood blocks. Under these conditions, the supply of reagent to the reaction site might not be sufficient to fuel the reaction.Part of this report was represented at the 52nd Annual Meeting of the Japan Wood Research Society, Gifu, April 2002  相似文献   

10.
Acetylation of wood was carried out in acetic anhydride only, acetic anhydride/xylene 1:1 (v/v), and acetic anhydride/pyridine 4:1 (v/v) solutions. The antishrink efficiency (ASE), hygroscopic properties, vibrational properties, and bending strength were compared among the three reaction solutions. The ASE was a simple function of weight gain (WG); the equilibrium moisture content at a given WG differed among the reaction solutions. Based on this fact and the results of repeated water soaking and oven-drying tests, it was found that the bulking effect was a major factor, and that decreased hygroscopicity contributes only slightly to the dimensional stabilization by acetylation. The difference in equilibrium moisture content among reaction solutions appears more significant in block samples than wood meal, probably due to the fiber-to-fiber bonds in the former. The tendencies for change in the specific Youngs modulus and the loss tangent differed among reaction solutions, whereas in the static bending test the difference was not marked.Part of this report was represented at the 52nd Annual Meeting of the Japan Wood Research Society, Gifu, April 2002  相似文献   

11.
为了使中纤板板面具有更好的色泽,增加销量,文章就如何提高中纤板表面白度进行了试验性研究。采用以草酸、漂白粉、VBL型荧光增白剂、双氧水为主剂的处理配方分别用涂刷的方法对小样中纤板表面进行增白试验,通过测定和分析处理效果发现,草酸、双氧水是适合中纤板板面增白的处理剂,综合考虑处理结果,以及成本和环保要求等因素,最后确定H2O2(27.5%)、NaOH(5%)、Na2SiO3(5%)以适当比例混合和浓度为5%的草酸为最佳中纤板板面增白配方。最后采用喷雾法用最佳处理配方对大样中纤板进行增白试验。结果表明,采用这两个配方对中纤板表面进行喷雾增白处理,白度分别可提高42.6%和17.5%,处理成本分别为127.11元/m^3和38.35元/m^3。  相似文献   

12.
To expand the utilization of waste newspapers and lignin, activated carbon (AC) sheets, as an example of AC moldings, were prepared from those mixtures. The isolated lignins used were softwood and hardwood acetic acid lignins (SAL and HAL), softwood kraft lignin (KL), and wheat-straw lignin (WSL). The mixtures were molded into precursory sheets by thermal compression and then converted to AC sheets by carbonization and steam activation. The flexural strength of the precursory sheets was dramatically improved by additing the lignins compared to that of sheets without lignin. The strength of several sheets was more than 25 MPa. This suggested that lignins act as adhesives. SAL and HAL sheets with 40% newspaper were strengthened by the carbonization, whereas the strength of other lignin sheets was depressed. Finally, the AL-based AC sheets showed higher flexural strength (>6MPa) than others. Most of the AC sheets had adsorption ability comparable to that of commercially available AC powder and granules. The capacities were almost independent of paper content. Among the AC moldings tested, the AL-based AC sheets showed the fastest adsorption top-chlorophenol. Thus, viable AC moldings can be prepared from lignin-wastepaper mixtures, particularly SAL and HAL.  相似文献   

13.
A study was conducted to determine the suitability of zephyr strand from moso bamboo (Pyllostachys pubescens Mazel) for structural composite board manufacture. Thirty-two 1.8×40×40cm bamboo zephyr boards (BZB) were produced using four diameters of zephyr strand (9.5, 4.7, 2.8, and 1.5mm) and four target densities (0.6, 0.7, 0.8, and 0.9g/cm3). Results indicate that BZB exhibits superior strength properties compared to the commercial products. The size of the zephyr strand and the level of target density had a significant effect on the moduli of elasticity and rupture, internal bond strength, water absorption, and thickness swelling, but they did not have a significant effect on linear expansion. With regard to the physical properties, BZB exhibited less thickness swelling and exhibited good dimensional stability under dry-wet conditioning cycles.Part of this research was presented at the 48th annual meeting of the Japan Wood Research Society, Shizuoka, April 1998; it was reported at the 4th Pacific Rim Bio-Based Composite Symposium, Bogor, Indonesia, November 1998  相似文献   

14.
Common hornbeam (Carpinus betulus L.) is a highly underused wood species despite its great hardness, strength, wear-resistance and toughness. It is mainly used as firewood in Hungary because of its wood defects, irregular shape and low-dimensional stability. These wood defects and small breast height diameter result in a low yield. It is non-durable outdoors as it tends to turn grey, crack and be attacked by wood-decaying organisms. Indoors it lasts for hundreds of years. One technology that could improve the stability and durability properties is acetylation. Hornbeam was acetylated with the Accoya® method under industrial conditions. The aim of this research was the assessment of acetylation affecting the chemical properties of hornbeam wood and how these are related to the change in physical and mechanical properties. Main wood constituents (cellulose, hemicellulose, Klason lignin, extractives and ash content) were determined and compared. Chemical parameters related to the degradation of structural polymers were also evaluated (total phenolic and soluble carbohydrate contents, pH and buffering capacity, furfural, levulinic acid, formic acid, acetic acid). Structural changes in acetylated wood and in the Klason lignin fraction were also assessed using FTIR spectroscopy.  相似文献   

15.
树木剪枝堆肥与传统堆肥对土壤化学性质的影响   总被引:2,自引:0,他引:2  
通过与完熟牛粪肥、腐熟树叶堆肥、树皮畜粪混合堆肥3种传统堆肥进行对比,并以不施肥土壤作对照,研究树木剪枝堆肥对土壤中的全氮全碳含量、阳离子交换能力、有效盐基阳离子浓度的影响.结果表明:施肥1 a后完熟牛粪堆肥、腐熟树叶堆肥、树皮畜粪混合堆肥和树木剪枝堆肥氮素耗损分别为1.10,1.30,1.33和1.44 g/kg,剪枝堆肥中的有机氮素更容易转化为容易被土壤吸收的无机氮素;完熟牛粪堆肥、腐熟树叶堆肥、树皮畜粪混合堆肥和树木剪枝堆肥的全碳损耗分别为1.37,2.73,1.84和4.37 g/kg,相比于传统堆肥,剪枝肥的全碳损耗更大,被分解的碳素明显高于其他传统有机肥;剪枝肥料能加快土壤中微生物的分解效率,导致其微生物活性远高于其他施肥处理;剪枝肥施用1 a后,土壤阳离子交换量、有效盐基阳离子浓度等均显著增加(P<0.05),从而增加土壤中可被植物吸收的微量营养元素.  相似文献   

16.
A purified softwood kraft lignin was modified by ozone treatment and its activity as an acid soil conditioning agent, mainly focusing on elimination of aluminum toxicity, was assayed by planting experiments. The growth of radish root was examined in nutrient solution containing CaCl2 and AlCl3 at pH 4.8 with and without modified kraft lignins. The modified kraft lignins that absorbed 1.8 and 3.9 moles of ozone per C6-C3 unit (M w 180) showed two effects: the elimination of aluminum toxicity and the acceleration of root growth. The effect on the elimination of aluminum toxicity was observed even with modified kraft lignin that absorbed 1.0 mole of ozone per C6-C3 unit. The high molecular weight part of the modified kraft lignin that absorbed 3.9 moles of ozone per C6-C3 unit also proved to be effective not only in elimination of aluminum toxicity but also in acceleration of root growth. The acceleration effect of ozone-treated lignins on root growth was also observed under the absence of aluminum in planting experiments. This report was presented in part at the 56th Annual Meeting of the Japan Wood Research Society, Akita, Japan, August 2006  相似文献   

17.
The withdrawal strength of a bolt-nut connector made from wood-based material was evaluated. The thread strength of the wooden bolt-nut connector was tested to select various parameters of the connector and the type of wood material; the wood materials tested were hard maple, white oak, ebony, glue-laminated bamboo, and densified Japanese cedar. A plane model of wooden threads with various thread angles was also evaluated. The results showed that the maximum failure load of the thread increased with increasing bolt density and connection area, which was calculated from the diameter of the bolt and the thickness of the nut. The withdrawal resistance after reaching the maximum load underwent a graded decrease because the bolt threads were broken one by one. In addition, the thread strength depended on the thread angle. In the model with a thread angle of 90°, compressive deformation in the transverse direction occurred prior to shear deformation along the root of the threads; the model with this thread angle thus had higher strength than those with other angles.  相似文献   

18.
The object of this study was to investigate the strength properties of edge-glued laminae and to propose a suitable grading method based on the lamina modulus of elasticity (MOE). Edge-glued laminae composed of lumber with similar MOEs (uniform laminae) and edge-glued laminae produced by randomly gluing lumber independent of MOE (random laminae) were made from karamatsu (Larix kaempferi) lumber having the same thickness and length, but various widths. For both the uniform and random laminae, there was a strong correlation between MOE values measured using the longitudinal vibration technique, the static bending test, and a grading machine. The average values of bending, tensile, and compressive strengths of the uniform laminae were similar to those of the random laminae. On the other hand, the average strength of laminae without end joints was significantly higher than that of finger-jointed laminae for both uniform and random laminae. Finger-joints and knots played a significant role in the failure of specimens, but the edge-gluing and the difference in MOE within an edge-glued lamina did not appear to affect the strength properties. The bending, tensile, and compressive strengths of edge-glued laminae were strongly correlated to the lamina MOE.  相似文献   

19.
In order to examine the contribution of wood components to the acetylation of wood, we acetylated wood meal that had been partially delignified. The results were analyzed in terms of the reaction kinetics. The first-order rate equation was successfully adjusted to the weight gain data. The rate constant for acetylation initially increased with progress of lignin elimination and then turned to decrease; the apparent activation energy showed the reverse tendency and ranged from about 90 to 130 kJ/mol. These results suggest that lignin elimination brings not only separation of lignin but also drastic change of the chemical and/or physical structure in the residual lignin, and this affects the reactivity of wood meal as a whole. The ultimate weight gain estimated by the regression of the rate equation showed a minimum when lignin was moderately eliminated, which was explained in terms of enhanced reactivity of lignin and lower accessibility for holocellulose than predicted. The equilibrium moisture content had a maximum when lignin was moderately eliminated. This tendency is the opposite of that observed for the ultimate weight gain, and suggests that the sites for acetylation do not always correspond to those for moisture adsorption. Part of this report was presented at the 54th Annual Meeting of the Japan Wood Research Society, Sapporo, August 2004  相似文献   

20.
Connection plays an important role in structural components and end jointing is one of the most common connections in structural applications.This study was designed to investigate some mechanical properties (MOE and MOR) of solid wood samples manufactured from poplar (Populus nigra),joined together through end jointing.As well,we studied combinations of lumber manufactured from 10-mm veneer,using a polyvinyl acetate adhesive.The results show that non-jointed lumber (control samples) have better bending properties (MOE and MOR) than jointed specimens and lumber made from laminated layers.On the whole,side-byside joints have a negative effect on the MOR and MOE of laminated products,which is more pronounced in the MOR.By increasing the number of joints,the properties of combination of three-ply,i.e.,bending strength and modulus of elasticity,decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号